Kinetics and Mechanism of Aerobic Oxidation of Alcohols in the Presence of Palladium Carboxylate Complexes. A Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper examines the kinetics and mechanism of aerobic oxidation of alcohols in the presence of various types of palladium carboxylate complexes, including binary carboxylates Pd(RCO2)2, complexes containing N-heterocyclocarboxylic acid anions, palladium nitrosyl carboxylates Pd4(NO)2(RCO2)4, and also summarizes the currently available information on the direct interaction of palladium carboxylate complexes with alcohols.

Full Text

Restricted Access

About the authors

O. N. Shishilov

MIREA – Russian Technological University

Author for correspondence.
Email: oshishilov@gmail.com
Russian Federation, Moscow

V. A. Polyakova

MIREA – Russian Technological University

Email: oshishilov@gmail.com
Russian Federation, Moscow

N. S. Akhmadullina

A.A. Baikov Institute of Metallurgy and Material Science of the Russian Academy of Sciences

Email: oshishilov@gmail.com
Russian Federation, Moscow

R. S. Shamsiev

MIREA – Russian Technological University

Email: oshishilov@gmail.com
Russian Federation, Moscow

V. R. Flid

MIREA – Russian Technological University

Email: oshishilov@gmail.com
Russian Federation, Moscow

References

  1. Stahl S.S. // Angew. Chem. Int. Ed. 2004. V. 43. P. 3400.
  2. Zeni G., Larock R.C. // Chem. Rev. 2004. V. 104. P. 2285.
  3. Sigman M.S., Jensen D.R. // Acc. Chem. Res. 2006. V. 39. P. 221.
  4. Beccalli E.M., Broggini G., Martinelli M., Sottocornola S. // Chem. Rev. 2007. V. 107. P. 5318.
  5. Minatti A., Muñiz K. // Chem. Soc. Rev. 2007. V. 36. P. 1142.
  6. Karimi B., Zamani A. // J. Iran. Chem. Soc. 2008. V. 5. P. S1.
  7. Chen X., Engle K.M., Wang D.-H., Yu J.-Q. // Angew. Chem. Int. Ed. 2009. V. 49. P. 5094.
  8. Yeung C.S., Dong V.M. // Chem. Rev. 2011. V. 111. P. 1215.
  9. Liu C., Zhang H., Shi W., Lei A. // Chem. Rev. 2011. V. 111. P. 1780.
  10. McDonald R.I., Liu G., Stahl S.S. // Chem. Rev. 2011. V. 111. P. 2981.
  11. Liron F., Oble J., Lorion M.M., Poli G. // Eur. J. Org. Chem. 2014. P. 5863.
  12. Wang D., Weinstein A.B., White P.B., Stahl S.S. // Chem. Rev. 2018. V. 118. P. 2636.
  13. Курохтина А.А., Ларина Е.В., Лагода Н.А., Шмидт А.Ф. // Кинетика и катализ. 2022. Т. 63. № 5. С. 614.
  14. Тёмкин О.Н. // Кинетика и катализ. 2023. Т. 64. № 5. С. 528.
  15. Костюкович А.Ю., Патиль Е.Д., Бурыкина Ю.В., Анаников В.П. // Кинетика и катализ. 2023. Т. 64. № 1. С. 53.
  16. Hudlicky M. Oxidations in Organic Chemistry. American Chemical Society, Washington DC, 1990.
  17. Tojo G., Fernández M. Oxidation of Alcohol to Aldehydes and Ketones: A Guide to Common Practice. New York: Springer, 2006.
  18. Sheldon R.A. // Chem. Soc. Rev. 2012. V. 41. P. 1437.
  19. Modern Oxidation Methods. Ed. Bäckvall J.E. Winheim: Wiley-VCH, 2004.
  20. Punniyamurthy T., Velusamy S., Iqbal J. // Chem. Rev. 2005. V. 105. P. 2329.
  21. Schultz M.J., Sigman M.S. // Tetrahedron. 2006. V. 62. P. 8227.
  22. Berzelius J.J. // Pogg. Ann. 1828. V. 13. P. 435.
  23. Tsuji J. Paladium Reagents and Catalysts. New Perspectives for the 21st Centruy. Chichester. U.K.: J. Wiley & Sons, 2004.
  24. Jira R. // Angew. Chem. Int. Ed. 2009. V. 48. P. 9034.
  25. Keith J.A., Henry P.M. // Angew. Chem. Int. Ed. 2009. V. 48. P. 9038.
  26. Stahl S.S. // Science. 2005. V. 309. P. 1824.
  27. Stephenson T.A., Morehouse S.M., Powell A.R., Heffer J.P., Wilkinson G. // J. Chem. Soc. 1965. P. 3632.
  28. Бацанов А.С., Тимко Г.А., Стручков Ю.Т., Гэрбэлэу Н.В., Индричан К.М., Попович Г.А. // Коорд. химия. 1989. Т. 15. № 5. С. 688.
  29. Bancroft D.P., Cotton F.A., Falvello L.R., Schwotzer W. // Polyhedron. V. 7. № 8. P. 615.
  30. Козицына Н.Ю., Мартенс М.В., Столяров И.П., Нефедов С.Е., Варгафтик М.Н., Еременко И.Л., Моисеев И.И. // Журн. неорг. химии. 1999. Т. 44. № 11. С. 1915.
  31. Ефименко И.А., Подобедов Р.Е., Чураков А.В., Кузьмина Л.Г., Гарбузова И.А., Локшин Б.В., Максимов А.Л., Флид В.Р. // Коорд. химия. 2011. Т. 37. № 8. С. 625.
  32. Stromnova T.A., Monakhov K.Yu., Campora J., Palma P., Carmona E., Alvarez E. // Inorg. Chim. Acta. 2007. V. 360. P. 4111.
  33. Willcox D., Chappell B.G.N., Hogg K.F., Calleja J., Smalley A.P., Gaunt M.J. // Science. 2016. V. 354. P. 851.
  34. Moiseev I.I., Stromnova T.A., Vargaftik M.N., Mazo G. Ja., Kuz'mina L.G., Struchkov Yu.T. // J. Chem. Soc., Chem. Commun. 1978. V. 1. P. 27.
  35. Stromnova T.A., Shishilov O.N., Dayneko M.V., Monakhov K.Yu., Churakov A.V., Kuz’mina L.G., Howard J.A.K. // J. Organomet. Chem. 2006. V. 691. P. 3730.
  36. Shishilov O.N., Ankudinova P.V., Nikitenko E.V., Churakov A.V., Garbuzova I.A., Akhmadullina N.S., Minaeva N.A., Demina L.I., Efimenko I.A. // J. Organomet. Chem. 2014. V. 767. P. 112.
  37. Kirik S.D., Mulagaleev R.F., Blokhin A.I. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2004. V. C60. P. m449.
  38. Marson A., van Oort A.B., Mul W.P. // Eur. J. Inorg. Chem. 2002. P. 3028.
  39. Bakhmutov V.I., Berry J.F., Cotton F.A., Ibragimov S., Murillo C.A. // Dalton Trans. 2005. Р. 1989.
  40. Bianchini C., Meli A., Oberhauser W. // Organometallics. 2003. V. 22. P. 4281.
  41. Zagorodnikov V.P., Ryabov A.D., Yatsimirskii A.K. // Kinet. Сatal. 1981. V. 22. P. 132.
  42. Khabibulin V.R., Kulik A.V., Oshanina I.V., Bruk L.G., Temkin O.N., Nosova V.M., Ustynyuk Yu.A., Bel’skii V.K., Stash A.I., Lysenko K.A., Antipin M.Yu. // Kinet. Catal. 2007. V. 48. P. 228.
  43. Nosova V.M., Ustynyuk Yu.A., Bruk L.G., Temkin O.N., Kisin A.V., Storozhenko P.A. // Inorg. Chem. 2011. V. 50. P. 9300.
  44. Bedford R.B., Bowen J.G., Davidson R.B., Haddow M.F., Seymour-Julen A.E., Sparkes H.A., Webster R.L. // Angew. Chem. Int. Ed. 2015. V. 54. № 22. P. 6591.
  45. Stromnova T.A., Paschenko D.V., Boganova L.I., Daineko M.V., Katser S.B., Churakov A.V., Kuz’mina L.G., Howard J.A.K. // Inorg. Chim. Acta. 2003. V. 350. P. 283.
  46. Shishilov O.N., Stromnova T.A., Efimenko I.A., Churakov A.V., Howard J.A.K., Minaeva N.A. // J. Organomet. Chem. 2011. P. 2023.
  47. Shishilov O.N., Akhmadullina N.S., Rezinkova Ya.N., Podobedov R.E., Churakov A.V., Efimenko I.A. // Dalton Trans. 2013. V. 42. P. 3712.
  48. Shishilov O.N., Shamsiev R.S., Akhmadullina N.S., Naumova V.A., Flid V.R. // J. Mol. Struct. 2018. V. 1173. P. 974.
  49. Jira R. // Angew. Chem. Int. Ed. 2009. V. 48. № 48. P. 9034.
  50. Keith J.A., Henry P.M. // Angew. Chem. Int. Ed. 2009. V. 48. P. 9038.
  51. Gilgorich K.M., Sigman M.S. // Chem. Commun. 2009. P. 3854.
  52. Peterson K.P., Larock R.C. // J. Org. Chem. 1998. V. 63. № 10. P. 3185.
  53. Nishimura T., Onoue T., Ohe K., Uemura S. // J. Org. Chem. 1999. V. 64. № 18. P. 6750.
  54. Schultz M.J., Park C.C., Sigman M.S. // Chem. Commun. 2002. P. 3034.
  55. Schultz M.J., Hamilton S.S., Jensen D.R., Sigman M.S. // J. Org. Chem. 2005. V. 70. № 9. P. 3343.
  56. Steinhoff B.A., Fix S.R., Stahl S.S. // J. Am. Chem. Soc. 2002. V. 124. № 5. P. 766.
  57. Steinhoff B.A., Guzei I.A., Stahl S.S. // J. Am. Chem. Soc. 2004. V. 126. № 36. P. 11268.
  58. Schultz M.J., Adler R.S., Zierkiewicz W., Privalov T., Sigman M.S. // J. Am. Chem. Soc. 2005. V. 127. P. 8499.
  59. ten Brink G.-J., Papadogianakis G., Arends I.W.C.E., Sheldon R.A. // Appl. Catal. A: Gen. 2000. V. 194–195. P. 435.
  60. ten Brink G.-J., Arends I.W.C.E., Sheldon R.A. // Science. 2001. V. 287. № 5458. P. 1636.
  61. ten Brink G.-J., Arends I.W.C.E., Hoogenraad M., Verspui G., Sheldon R.A. // Adv. Synth. Catal. 2003. V. 345. P. 1341.
  62. ten Brink G.-J., Arends I.W.C.E., Hoogenraad M., Verspui G., Sheldon R.A. // Adv. Synth. Catal. 2003. V. 345. P. 497.
  63. Jensen D.R., Pugsley J.S., Sigman M.S. // J. Am. Chem. Soc. 2001. V. 123. № 30. P. 7475.
  64. Ferreira E.M., Stoltz B.M. // J. Am. Chem. Soc. 2001. V. 123. № 31. P. 7725.
  65. Jensen D.R., Schulz M.J., Mueller J.A., Sigman M.S. // Angew. Chem. Int. Ed. 2003. V. 42. № 32. P. 3810.
  66. Paavola S., Zatterberg K., Privalov T., Csöregh I., Moberg C. // Adv. Synth. Catal. 2004. V. 346. № 2–3. P. 237.
  67. Urgoitia G., SanMartin R., Herrero M.T., Domínguez E. // Green Chem. 2011. V. 13. P. 2161.
  68. Pearson D.M., Conley N.R., Waymouth R.M. // Organometallics. 2011. V. 30. № 6. P. 1445.
  69. ten Brink G.-J., Arends I.W.C.E., Sheldon R.A. // Adv. Synth. Catal. 2002. V. 344. № 3–4. P. 355.
  70. Steinhoff B.A., Stahl S.S. // J. Am. Chem. Soc. 2006. V. 128. № 13. P. 4348.
  71. Trend R.M., Stoltz B.M. // J. Am. Chem. Soc. 2004. V. 126. № 14. P. 4482.
  72. Trend R.M., Stoltz B.M. // J. Am. Chem. Soc. 2008. V. 130. № 47. P. 15957.
  73. Ebner D.C., Bagdanoff J.T., Ferreira E.M., McFadden R.M., Caspi D.C., Trend R.M., Stoltz B.M. // Chem. Eur. J. 2009. V. 15. № 47. P. 12978.
  74. Privalov T., Linde C., Zatterberg K., Moberg C. // Organometallics. 2005. V. 24. № 5. P. 885.
  75. Stahl S.S., Thorman J.L., Nelson R.C., Kozee M.A. // J. Am. Chem. Soc. 2001. V. 123. № 29. P. 7188.
  76. Konnick M.M., Guzel I.A., Stahl S.S. // J. Am. Chem. Soc. 2004. V. 126. № 33. P. 10212.
  77. Popp B.V., Wendlandt J.E., Landis C.R., Stahl S.S. // J. Am. Chem. Soc. 2007. V. 129. № 3. P. 601.
  78. Keith J.M., Nielsen R.J., Oxgaard J., Goddard W.A. // J. Am. Chem. Soc. 2005. V. 127. № 38. P. 13172.
  79. Denney M.C., Smythe N.A., Cetto K.L., Kemp R.A., Goldberg K.I. // J. Am. Chem. Soc. 2006. V. 128. № 8. P. 2058.
  80. Keith J.M., Muller R.P., Kemp R.A., Goldberg K.I., Goddard W.A., Oxgaard J. // Inorg. Chem. 2006. V. 45. № 24. P. 9631.
  81. Keith J.M., Goddard W.A. // J. Am. Chem. Soc. 2009. V. 131. № 4. P. 1416.
  82. Popp B.V., Stahl S.S. // J. Am. Chem. Soc. 2007. V. 129. № 14. P. 4410.
  83. Popp B.V., Stahl S.S. // Chem. Eur. J. 2009. V. 15. № 12. P. 2915.
  84. Bianchi D., Bortolo R., D'Aloisio R., Ricci M. // Angew. Chem. Int. Ed. 1999. V. 38. № 5. P. 706.
  85. Steinhoff B.A., King A.E., Stahl S.S. // J. Org. Chem. 2006. V. 71. № 5. P. 1861.
  86. Mueller J.A., Jensen D.R., Sigman M.S. // J. Am. Chem. Soc. 2002. V. 124. № 28. P. 8202.
  87. Bettucci L., Bianchini C., Filippi J., Lavacchi A., Overhauser W. // Eur. J. Inorg. Chem. 2011. № 11. P. 1797.
  88. Zhao J., Hasslink H., Hartwi J.F. // J. Am. Chem. Soc. 2001. V. 123. № 30. P. 7220.
  89. Macgregor S.A., Vadivelhu P. // Organometallics. 2007. V. 26. № 15. P. 3651.
  90. Zhao H., Ariafard A., Lin Z. // Organometallics. 2006. V. 25. № 4. P. 812.
  91. Theofanis P.L., Goddard R.A. // Organometallics. 2011. V. 30. № 18. P. 4941.
  92. Farfard C.M., Ozerov O.V. // Inorg. Chim. Acta. 2007. V. 360. P. 286.
  93. Melero C., Martínez-Prieto L.M., Palma P., del Río D., Álvarez E., Cámpora J. // Chem. Commun. 2010. V. 46. P. 8851.
  94. Schultz M.J., Hamilton S.S., Jensen D.R., Sigman M.S. // J. Org. Chem. 2005. V. 70. P. 3343.
  95. Conley N.R., Labios L.A., Pearson D.M., McCrory C.L.C., Waymouth R.M. // Organometallics. 2007. V. 56. № 23. P. 5447.
  96. Melero C., Shishilov O.N., Alvarez E., Palma P., Campora J. // Dalton Trans. 2012. V. 41. P. 14087.
  97. Urry W.H., Kharasch M.S. // J. Am. Chem. Soc. 1944. V. 66. № 9. P. 1438.
  98. Studer A., Bossart M. // Tetrahedron. 2001. V. 57. P. 9649.
  99. Boisvert L., Denney M.C., Kloek Hanson S., Goldberg K. // J. Am. Chem. Soc. 2009. V. 131. № 43. P. 15802.
  100. Huacuja R., Graham D.J., Farfard C.M., Chen C.-H., Foxman B.M., Herbert D.E., Allinger G., Thomas C.M., Ozerov O.V. // J. Am. Chem. Soc. 2011. V. 133. № 11. P. 3820.
  101. Traubmann S., Alt H.G. // J. Mol. Catal. A: Chem. 2008. V. 289. P. 44.
  102. Шмидт А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А. // Тонкие химические технологии. 2023. Т. 18. № 4. С. 328.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of Pd3(RCO2)6 (a), Pd4(CO)4(RCO)4 (b), Pd6(CO)6(RCO2)6 (c) and catena-[Pd(OAc)2]n (d) complexes

Download (240KB)
3. Fig. 2. Structure of Pd3(μ-OMe)(μ-OAc)5 (a), Pd3(μ-OMe)2(OAc)4 (b) and Pd3(μ-OH)(μ-OAc)5 (c) complexes

Download (121KB)
4. Fig. 3. Structure of palladium nitrosyl carboxylates Pd4(μ-NO)2(μ-RCO2)6 (a) and Pd4(μ-NO)4(μ-RCO2)4 (b)

Download (116KB)
5. Fig. 4. Possible pathways of transformation of Pd4(NO)2(OAc)6 into Pd2(NO)(OAc)3(MeOH)2 in the presence of methanol according to DFT calculations

Download (260KB)
6. Fig. 5. Possible route of transformation of Pd2(NO)(OAc)3(MeOH)2 to Pd(NO)(OAc)(MeOH)3 and Pd(OAc)2(MeOH)2 in the presence of methanol

Download (183KB)
7. Scheme 1. Generalised mechanism of alcohol oxidation in the presence of palladium complexes

Download (117KB)
8. Scheme 2. Synthesis of neophilic palladium complexes containing N-heterocyclocarboxylic and sulfonic acid residues and N- and P-donor ligands

Download (171KB)
9. Table 1_Fig. 1

Download (7KB)
10. Table 1_Fig. 2

Download (9KB)
11. Table 1_Fig. 3

Download (9KB)
12. Table 1_Fig. 4

Download (5KB)
13. Table 1_Fig. 5

Download (7KB)
14. Table 1_Fig. 6

Download (8KB)
15. Scheme 3. Assumed mechanisms of activation and deactivation of palladium pyridine carboxylate complexes

Download (167KB)
16. Scheme 4. Suggested mechanism of alcohol oxidation on pyridine carboxylate catalysts

Download (179KB)
17. Fig. 6. Possible route of methanol oxidation in the coordination sphere of complex E according to PBE/L11 calculations

Download (218KB)
18. Fig. 7. Experimental and theoretical time dependences of benzaldehyde concentration in the presence of Pd(OAc)2/py, T = 80°C, p(O2) = 1 atm.

Download (123KB)