Application of Blast Furnace Granulated Slag for Self-Healing Bio-Concretes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The properties of fine-grained concrete containing 20–80% granulated blast furnace slag and bacteria species Bacillus Subtilis have been studied. An assessment was made of changes in strength, self-healing of cracks using optical and electron microscopy and measuring the speed of ultrasound propagation perpendicular to the crack plane; composition and characteristics of the healing agent in cracks using X-ray analysis methods. Self-healing of cracks in concrete without bacteria occurred due to calcite deposition as a result of carbonation of portlandite during 50–65 cycles of humidification-drying, and in the presence of Bacillus Subtilis bacteria due to calcite deposition during their vital activity in 10–15 cycles. It is shown that the addition of granulated blast furnace slag slows down the crystallization of calcite, which forms a healing substance in the crack. It is assumed that the combined use of granulated blast furnace slag in dosages of 40–80% and Bacillus Subtilis bacteria in concrete structures operating under conditions of variable humidification can ensure the process of self-healing cracks and maintaining the strength of concrete in the long term due to simultaneous processes of strengthening the structure due to prolonged hydration of slag minerals and calcite deposition in cracks due to the vital activity of Bacillus Subtilis bacteria.

Texto integral

Acesso é fechado

Sobre autores

T. Chernykh

South Ural State University (National Research University)

Autor responsável pela correspondência
Email: chernykhtn@susu.ru

Doctor of Sciences 

Rússia, Chelyabinsk

K. Gorbachevskikh

South Ural State University (National Research University)

Email: kirill38964@gmail.com

Student

Rússia, Chelyabinsk

M. Komelkova

South Ural State University (National Research University)

Email: komelkovamv@susu.ru

Doctor of Sciences (Biology)

Rússia, Chelyabinsk

P. Platkovskiy

South Ural State University (National Research University)

Email: paw.platkovski@yandex.ru

Research Assistant 

Rússia, Chelyabinsk

M. Kriushin

South Ural State University (National Research University)

Email: kriushinmv@susu.ru

Engineer

Rússia, Chelyabinsk

A. Orlov

South Ural State University (National Research University)

Email: orlovaa@susu.ru

Candidate of Sciences (Engineering) 

Rússia, Chelyabinsk

Bibliografia

  1. Karpov M.V., Zhizdyuk A.A., Naumova O.V. Justification of the use of bio concrete for the construction of hydraulic structures. Vestnik evraziyskoynauki. 2022. Vol. 14. No. 5. Article 10. (In Russian).
  2. Il’ina L.V., Tacki L.N., D’yakova K.S. Self-healing concrete. review of foreign publications. Vestnik ESSUTM. 2023. No. 2 (89), pp. 72–79. (In Russian). doi: 10.53980/24131997_2023_2_72
  3. Jonkers H.M. Bacteria-based self-healing concrete. Heron. 2011. Vol. 56. No. 1/2.
  4. Biryukov V.S., Smirnov A.S., Tambovcev A.M., Cherednichenko T.F. Trends in modern construction: self-healing concrete. Inzhenernyy vestnik Dona. 2022. No. 2 (86), pp. 1–8. (In Russian).
  5. Liu Y., Zhuge Y., Fan W., Duan W., Wang L. Recycling industrial wastes into self-healing concrete: A review. Environmental Research. 2022. Vol. 214. Part 4. 113975. doi: 10.1016/j.envres.2022.113975
  6. González Á., Parraguez A., Corvalán L., Correa N., Castro J., Stuckrath C., González M. Evaluation of Portland and Pozzolanic cement on the self-healing of mortars with calcium lactate and bacteria. Construction and Building Materials. 2020. Vol. 257. 119558. doi: 10.1016/j.conbuildmat.2020.119558
  7. Khushnood R.A., Qureshi Z.A., Shaheen N., Ali S. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of The Total Environment. 2020. Vol. 703. 135007. https://doi.org/10.1016/j.scitotenv.2019
  8. Nodehi M., Ozbakkaloglu T., Gholampour A. A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties. Journal of Building Engineering. 2022. Vol. 49. 104038. https://doi.org/10.1016/j.jobe.2022.104038
  9. Strokova V.V., Vlasov D.Yu., Frank-Kamenet- skaya O.V., Dukhanina U.N., Balitsky D.A. Applica- tion of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
  10. Bazhenov Yu.M., Erofeev V.T., Salman A.D.S.D., Smirnov V.F., Fomichev V.T. Tekhnologiya samovosstanovleniya zhelezobetonnyh konstrukcij s pomoshch’yu mikroorganizmov. Russkiy inzhener. 2018. No. 4 (61), pp. 46–48. (In Russian).
  11. De Belie N., Gruyaert E., Al-Tabbaa A., Antonaci P., Baera C., Bajare D., Jonkers H.M. A Review of self-healing concrete for damage management of structures. Advanced Materials Interfaces. 2018. Vol. 5. Iss. 17 1800074. doi: 10.1002/admi.201800074
  12. De Rooij M., Van Tittelboom K., De Belie N., Schlangen E. Self-healing phenomena in cement-based materials: State-of-the-art report of RILEM technical committee 221-SHC: Self-healing phenomena in cement-based materials Springer. Dordrecht, Netherlands. 2013. 266 p.
  13. Van Tittelboom K., De Belie N. Self-healing in cementitious materials – A review. Materials. 2013. Vol. 6 (6), pp. 2182–2217. doi: 10.3390/ma6062182
  14. Zhang L.V., Suleiman A.R., Allaf M.M., Marani A., Tuyan M., Nehdi M.L. Crack self-healing in alkali-activated slag composites incorporating immobilized bacteria. Construction and Building Materials. 2022. Vol. 326. Article 126842. doi: 10.1016/j.conbuildmat.2022.126842
  15. Siddique R., Singh K., Singh M., Corinaldesi V., Rajor A. Properties of bacterial rice husk ash concrete. Construction and Building Materials. 2016. Vol. 121, pp. 112–119. https://doi.org/10.1016/j.conbuildmat.2016.05.146
  16. Aquilano D., Benages R., Bruno M., Rubbo M., Massaro F.R. Positive {hk.l} and negative {hk.} forms of calcite (CaCO3) crystal. New open questions from the evaluation of their surface energies. CrystEngComm. 2013. Vol. 15 (22), pp. 4465–4472. doi: 10.1039/C3CE40203G

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Sample with a rounded end and an embedded crack (arrows indicate the direction of ultrasonic radiation)

Baixar (156KB)
3. Fig. 2. Compressive strength of beam samples depending on the number of wetting -drying cycles: a – without bacteria; b – with bacteria; 1 – 0%; 2 – 20%; 3 – 40%; 4 – 60%; 5 – 80%

Baixar (177KB)
4. Fig. 3. History of crack healing using the example of tablet samples with a slag content of 80%: a – without bacteria; b – with bacteria

Baixar (899KB)
5. Fig. 4. Dependence of the speed of ultrasound on the amount of slag: a – without bacteria; b – with bacteria; 1 – 0%; 2 – 20%; 3 – 40%; 4 – 60%; 5 – 80%

Baixar (223KB)
6. Fig. 5. Equilibrium shape (a) and BFDH shape (b) of calcite crystallites [16]

Baixar (67KB)
7. Fig. 6. Microphotographs of a healing agent in cracks of tablet samples 200: a – without adding slag; b – with the addition of slag 80%

Baixar (192KB)

Declaração de direitos autorais © ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2024