Экспрессия генов, регулирующих мышечный рост, у смолтов горбуши Oncorhynchus gorbuscha (Walb.) из разных рек бассейнов Белого и Баренцева морей
- Авторы: Шульгина Н.С.1, Кузнецова М.В.1, Ефремов Д.А.1, Мурзина С.А.1, Немова Н.Н.1
-
Учреждения:
- Институт биологии – обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Карельский научный центр Российской академии наук”
- Выпуск: № 5 (2025)
- Страницы: 520–529
- Раздел: БИОЛОГИЯ РАЗВИТИЯ
- URL: https://clinpractice.ru/1026-3470/article/view/689882
- DOI: https://doi.org/10.31857/S1026347025050033
- ID: 689882
Цитировать
Полный текст



Аннотация
Исследовали экспрессию генов миогенных регуляторных факторов – Myf5, MyoG, MyoD1a, MyoD1b, тяжелой (MyHC) и легкой (mlc2) цепей миозина, а также миостатина (Mstn1a) у смолтов горбуши Oncorhynchus gorbuscha (Walb.), выловленных в реках в период ската для нагула в Белое и Баренцево моря. Установлено, что особи из реки Кереть имели более высокие уровни экспрессии генов mlc2, MyHC, MyoD1a, MyoD1b и MyoG по сравнению с таковыми у рыб в реке Варзуга. Показано, что у смолтов из рек бассейна Белого моря – Индера, Кереть и Умба, значения экспрессии генов MyoD1b и MyoG, а в реке Варзуга – Myf5, были выше в отличие от рыб из реки Воронья бассейна Баренцева моря. У горбуши в реке Воронья был выявлен самый высокий уровень экспрессии гена Mstn1a. Полученные результаты указывают на различия в регуляции миогенеза у смолтов горбуши в зависимости от температурных и кормовых условий обитания в разных реках.
Ключевые слова
Полный текст

Об авторах
Н. С. Шульгина
Институт биологии – обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Карельский научный центр Российской академии наук”
Автор, ответственный за переписку.
Email: Shulgina28@yandex.ru
Россия, ул. Пушкинская, 11, Петрозаводск, 185910
М. В. Кузнецова
Институт биологии – обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Карельский научный центр Российской академии наук”
Email: Shulgina28@yandex.ru
Россия, ул. Пушкинская, 11, Петрозаводск, 185910
Д. А. Ефремов
Институт биологии – обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Карельский научный центр Российской академии наук”
Email: Shulgina28@yandex.ru
Россия, ул. Пушкинская, 11, Петрозаводск, 185910
С. А. Мурзина
Институт биологии – обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Карельский научный центр Российской академии наук”
Email: Shulgina28@yandex.ru
Россия, ул. Пушкинская, 11, Петрозаводск, 185910
Н. Н. Немова
Институт биологии – обособленное подразделение Федерального государственного бюджетного учреждения науки Федерального исследовательского центра “Карельский научный центр Российской академии наук”
Email: Shulgina28@yandex.ru
Россия, ул. Пушкинская, 11, Петрозаводск, 185910
Список литературы
- Азбелев В. В., Яковенко А. А. Материалы по акклиматизации горбуши в бассейне Баренцева и Белого морей // Труды ПИНРО. 1963. № 15. С. 7–26.
- Алексеев А. П., Кулачкова В. Г. Дальневосточная горбуша в бассейнах Белого и Баренцева морей (второй, «магаданский», этап акклиматизации) // Виды – вселенцы в европейских морях России: сб. науч. трудов. Апатиты: КНЦ РАН, 2000. 312 с.
- Алтухов Ю. П., Салменкова Е. А., Омельченко В. Т. Популяционная генетика лососевых рыб. М.: Наука, 1997.
- Зорина В. В. Основы полимеразной цепной реакции (ПЦР). Москва, 2012. 80 c.
- Зубченко А. В. Горбуша (Oncorhynchus gorbuscha): проблемы акклиматизации на европейском севере России / А. В. Зубченко, А. Е. Веселов, С. М. Калюжин. Петрозаводск-Мурманск: Фолиум, 2004. 82 с.
- Карпевич А. Ф. Акклиматизация и культивирование лососевых рыб-интродуцентов / А. Ф. Карпевич, В. С. Агапов, Г. М. Магомедов. Москва: ВНИРО, 1991. 209 с.
- Коросов А. В., Горбач В. В. Компьютерная обработка биологических данных: Метод. пособие. Петрозаводск: ПетрГУ, 2007. 76 с.
- Кудерский Л. А. Работы по акклиматизации горбуши Oncorhynchus gorbussa (Walbaum, 1972) в России // Проблемы изучения, рационального использования и охраны ресурсов Белого моря. Материалы IX Международной конференции. Петрозаводск, 2005. С.172–183.
- Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984. 480 с.
- Чурова М. В., Мещерякова О. В., Веселов А. Е., Немова Н. Н. Активность ферментов энергетического и углеводного обмена и уровень некоторых молекулярно-генетических показателей у молоди лосося (Salmo salar L.), различающейся возрастом и массой // Онтогенез. 2015. Т. 46. № 5. С. 304–312.
- Ahammad A. S., Asaduzzaman M., Ceyhun S. B., Ceylan H., Asakawa S., Watabe S., Kinoshita S. Multiple transcription factors mediating the expressional regulation of myosin heavy chain gene involved in the indeterminate muscle growth of fish // Gene. 2019. V. 687. P. 308–318. https://doi.org/10.1016/j.gene.2018.11.040
- Alami-Durante H., Cluzeaud M., Bazin D., Schrama J. W., Saravanan S., Geurden I. Muscle growth mechanisms in response to isoenergetic changes in dietary non-protein energy source at low and high protein levels in juvenile rainbow trout // Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2019. V. 230. P. 91–99. https://doi.org/10.1016/j.cbpa.2019.01.009
- Almeida F. L.A., Pessotti N. S., Pinhal D., Padovani C. R., de Jesus Leitão N., Carvalho R. F., Martins C., Portella M. C., Pai-Silva M.D. Quantitative expression of myogenic regulatory factors MyoD and myogenin in pacu (Piaractus mesopotamicus) skeletal muscle during growth // Micron. 2010. V. 41. P. 997–1004. https://doi.org/10.1016/j.micron.2010.06.012
- Beamish R. J., Mahnken C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change // Progress in Oceanography. 2001. T. 49. P. 423–437. https://doi.org/10.1016/S0079-6611(01)00034-9
- Berkes C. A., Tapscott S. J. MyoD and the transcriptional control of myogenesis // Seminars in cell & developmental biology. Acad. Press, 2005. V. 16. № 4-5. P. 585–595. https://doi.org/10.1016/j.semcdb.2005.07.006
- Bower N. I., Johnston I. A. Paralogs of Atlantic salmon myoblast determination genes are distinctly regulated in proliferating and differentiating myogenic cells // Am. J. Physiol. Regul. Comp. Physiol. 2010. V. 298. P. R1615-R1626. https://doi.org/10.1152/ajpregu.00114.2010
- Bower N. I., Taylor R. G., Johnston I. A. Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon // Frontiers in Zoology. 2009. V. 6. № 1. P. 1–13. 1). https://doi.org/10.1186/1742-9994-6-8
- Chapalamadugu K. C., Robison B. D., Drew R. E., Powell M. S., Hill R. A., Amberg J. J., Rodnick K. J., Hardy R. W., Hill M. L., Murdoch G. K. Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout // Comp. Biochem. Physiol. B. 2009. V. 153. P. 66–72. https://doi.org/10.1016/j.cbpb.2009.01.013
- Codina M., Capilla E., Jimenez-Amilburu V., Navarro I., Du S. J., Johnston I. A., Gutierrez J. Characterisation and expression of myogenesis regulatory factors during in vitro myoblast development and in vivo fasting in the gilthead sea bream (Sparus aurata) // Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology. 2014. V. 167. P. 90–99. https://doi.org/10.1016/j.cbpa.2013.10.020
- de Paula T. G., de Almeida F. L.A., Carani F. R., Vechetti-Junior I.J., Padovani C. R., Salomao R. A.S., Dal-Pai-Silva M. Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus) // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2014. V. 169. P. 31–37. https://doi.org/10.1016/j.cbpb.2013.12.004
- Dhillon R. S., Esbaugh A. J., Wang Y. S., Tufts B. L. Characterization and expression of a myosin heavy–chain isoform in juvenile walleye Sander vitreus // Journal of fish biology. 2009. V. 75. № 5. P. 1048–1062. https://doi.org/10.1111/j.1095-8649.2009.02376.x
- Fauconneau B., Paboeuf G. Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss) // Cell and tissue research. 2000. V. 301. P. 459–463. https://doi.org/10.1007/s004419900168
- Fernandes J. M.O., Mackenzie M. G., Wright P. A., Steele S. L., Suzuki Y., Kinghorn J. R., Johnston I. A. Myogenin in model pufferfish species: Comparative genomic analysis and thermal plasticity of expression during early development // Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 2006. V. 1. № 1. P. 35–45. https://doi.org/10.1016/j.cbd.2005.09.003
- Ganassi M., Badodi S., Ortuste Quiroga H. P., Zammit P. S., Hinits Y., Hughes S. M. Myogenin promotes myocyte fusion to balance fibre number and size // Nature Communications. 2018. V. 9. № 1. P. 1–17. https://doi.org/10.1038/s41467-018-06583-6
- Gordeeva N. V., Salmenkova E. A., Prusov S. V. Variability of biological and population genetic indices in pink salmon, Oncorhynchus gorbuscha transplanted into the White Sea basin // J. Ichthyol. 2015. V. 55. P. 69–76. https://doi.org/10.1134/S0032945215010051
- Heard W. R. Life history of pink salmon (Oncorhynchus gorbuscha) // Pacific salmon life histories / Eds Groot C., Margolis L. Vancouver: UBC Press, 1991. P. 121–230.
- Hevrøy E. M., Jordal A. O., Hordvik I., Espe M. et al. Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar // Aquaculture. 2006. V. 252. № 2–4. P. 453–461. https://doi.org/10.1016/j.aquaculture.2005.07.003
- Ikeda D., Ono Y., Snell P., Edwards Y. J., Elgar G., Watabe S. Divergent evolution of the myosin heavy chain gene family in fish and tetrapods: evidence from comparative genomic analysis // Physiol. Genomics. 2007. V. 32. P. 1–15. https://doi.org/10.1152/physiolgenomics.00278.2006
- Johansen K. A., Overturf K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2006. V. 144. № 1. P. 119–127. https://doi.org/10.1016/j.cbpb.2006.02.001
- Johansen K. A., Overturf K. Quantitative expression analysis of genes affecting muscle growth during development of rainbow trout (Oncorhynchus mykiss) // Marine Biotechnology. 2005. V. 7. № 6. P. 576–587. https://doi.org/10.1007/s10126-004-5133-3
- Johnston I. A. Environment and plasticity of myogenesis in teleost fish // J. Exp. Biol. 2006. № 209. P. 2249–2264. https://doi.org/10.1242/jeb.02153
- Johnston I. A., Lee H.-T., Macqueen D. J., Paranthaman K., Kawashima C., Anwar A., Kinghorn J. R., Dalmay T. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes // J. Exp. Biol. 2009. V. 212. P. 1781–1793. https://doi.org/10.1242/jeb.029918
- Johnston I. A., Macqueen D. J., Watabe S. Molecular biotechnology of development and growth in fish muscle // Fisheries for global welfare and environment, 5th World Fisheries Congress. 2008. P. 241–262.
- Johnston I. A., Manthri S., Smart A., Campbell P. et al. Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation // J. Exp. Biol. 2003. V. 206. № 19. P. 3425–3435. https://doi.org/10.1242/jeb.00577
- Langley B., Thomas M., Bishop A., Sharma M., Gilmour S., Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression // Journal of biological chemistry. 2002. V. 277. № 51. P. 49831–49840. https://doi.org/10.1074/jbc.M204291200
- Macqueen D. J., Johnston I. A. An update on MyoD evolution in teleosts and a proposed consensus nomenclature to accommodate the tetraploidization of different vertebrate genomes // PLoS ONE. 2008. V. 3. P. e1567. https://doi.org/10.1371/journal.pone.0001567
- Moss J. H., Beauchamp D. A., Cross A. D., Myers K. W., Farley E. V., Jr. Murphy, J.M., Helle J. H. Evidence for size-selective mortality after the first summer of ocean growth by pink Salmon // Transactions of the American Fisheries Society. 2005. V. 134. P. 1313–1322. https://doi.org/10.1577/T05-054.1
- Nagasawa K., Giannetto A., Fernandes J. M.O. Photoperiod influences growth and mll (mixed-lineage leukaemia) expression in Atlantic cod // PLoS ONE. 2012. V. 7. P. e36908. https://doi.org/10.1371/journal.pone.0036908
- Østbye T. K.K, Wetten O. F., Tooming-Klunderud A., Jakobsen K. S., Yafe A., Etzioni S. Andersen O. Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and -2 // Gene. 2007. V. 403. № 1-2. P. 159–169. https://doi.org/10.1016/j.gene.2007.08.008
- Parker M. H., Seale P., Rudnicki M. A. Looking back to the embryo: defining transcriptional networks in adult myogenesis // Nature Reviews Genetics. 2003. V. 4. № 7. P. 497–507. https://doi.org/10.1038/nrg1109
- Quinn T. P. The behavior and ecology of Pacific Salmon and Trout. Seattle; WA: University of Washington Press, 2005.
- Radchenko V. I., Beamish R. J., Heard W. R., Temnykh O. S. Ocean ecology of pink salmon // The ocean ecology of Pacific Salmon and Trout / Ed. Beamish R. J. Bethesda; MD: American Fisheries Society, 2018. P. 15–160.
- Rescan P. Y., Gauvry L., Paboeuf G. A gene with homology to myogenin is expressed in developing myotomal musculature of the rainbow trout and in vitro during the conversion of myosatellite cells to myotubes // FEBS Letters. 1995. V. 362. № 1. P. 89–92. https://doi.org/10.1016/0014-5793(95)00215-U
- Rowlerson A., Veggetti A. Cellular mechanisms of post embryonic growth in aquaculture species // Fish Physiol.: Muscle Development and Growth / Eds Johnston I. A. San Diego: Academic Press, 2001. P. 103–140.
- Sandlund O. T., Berntsen H. H., Fiske P., Kuusela J., Muladal R., Niemelä E., Uglem I., Forseth T., Mo T. A., Thorstad E. B., Veselov A. E., Vollset K. W., Zubchenko A. V. Pink salmon in Norway: the reluctant invader // Biological Invasions. 2019. V. 21. № 4. P. 1033–1054. https://doi.org/10.1007/s10530-018-1904-z
- Schmittgen T. D., Livak K. J. Analyzing real-time PCR data by the comparative CT method // Nature protocols. 2008. V. 3. № 6. P. 1101–1108. doi: 10.1038/nprot.2008.73
- Terova G., Bernardini G., Binelli G., Gornati R., & Saroglia M. cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their abundance levels // Domestic Animal Endocrinology. 2006. V. 30. № 4. P. 304–319. https://doi.org/10.1016/j.domaniend.2005.08.003
- Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J., Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation // J. Biological Chemistry. 2000. V. 275. № 51. P. 40235–40243. doi: 10.1074/jbc.M004356200
- Wang Y., Szczesna-Cordary D., Craig R., Diaz-Perez Z., Guzman G., Miller T., Potter J. D. Fast skeletal muscle regulatory light chain is required for fast and slow skeletal muscle development // FASEB J. 2007. V. 21. № 9. P. 22052214. https://doi.org/10.1096/fj.06-7538com
- Watabe S. Myogennic Regulatory Factros // Fish Physiol.: Muscle Development and Growth / Eds Johnston I. A. San Diego: Academic Press, 2001. P. 19–41.
- Weber T. E., Bosworth B. G. Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish // Aquaculture. 2005. V. 246. № 1-4. P. 483–492. https://doi.org/10.1016/j.aquaculture.2005.02.032
- Wilkes D., Xie S. Q., Stickland N. C., Alami-Durante H., Goldspink G. Temperature and myogenic factor transcript levels during early development determines muscle growth potential in rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax) // J. Exp. Biol. 2001. V. 204. P. 2763–2771. https://doi.org/10.1242/jeb.204.16.2763
- Wu P., Chu W., Liu X., Guo X., Zhang J. The influence of short-term fasting on muscle growth and fiber hypotrophy regulated by the rhythmic expression of clock genes and myogenic factors in Nile tilapia // Marine Biotechnology. 2018. V. 20. P. 750–768. https://doi.org/10.1007/s10126-018-9846-0
- Zhu K., Wang H., Wang H., Gul Y., Yang M., Zeng C., Wang W. Characterization of muscle morphology and satellite cells, and expression of muscle-related genes in skeletal muscle of juvenile and adult Megalobrama amblycephala // Micron. 2014. V. 64. P. 66–75. https://doi.org/10.1016/j.micron.2014.03.009
Дополнительные файлы
