Symmetry Breaking and Multistability of Electrostatically Actuated Annular Microplates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article investigates the nonlinear problem of statics of a ring microplate in the electrostatic field of two electrodes. Using the assumptions of the geometrically nonlinear Karman model, partial differential equilibrium equations for the system are obtained. The branch points of nontrivial axisymmetric and skew-symmetric forms of equilibrium are analytically rigorously found. It is noted that at certain ratios between the internal and external radii of the plate, the lowest form of buckling is the skew-symmetric form with the lowest circumferential variability. Using the Galerkin projection method and numerical methods of the theory of bifurcations, branching diagrams of both axisymmetric and skew-symmetric equilibrium positions of the plate in the space of key parameters of the system are found. It is shown that at certain relationships between the thickness of the plate and the interelectrode gap, multistability is observed in the system - the existence of two or more non-trivial stable forms of equilibrium that are symmetrical relative to the plane of the plate. A qualitative (parametric) analysis of the found areas of multistability is performed. The possibility of a plate jumping from one stable equilibrium position to another, controlled by an electrostatic field, is indicated. The discovered effect can be used to develop high-precision microelectromechanical sensors of limiting values of various physical quantities, the output signal of which is an abrupt change in the amplitude of the static deflection of the sensitive element of the proposed configuration measured by a capacitive sensor.

Sobre autores

N. Morozov

St. Petersburg State University; Institute for Problems in Mechanical Engineering, Russian Academy of Sciences

Autor responsável pela correspondência
Email: n.morozov@spbu.ru
Rússia, St. Petersburg, 199034; St. Petersburg, 199178

A. Lukin

Peter the Great St. Petersburg Polytechnic University

Email: lukin_av@srbstu.ru
Rússia, St. Petersburg, 195251

I. Popov

Peter the Great St. Petersburg Polytechnic University

Email: popov_ia@spbstu.ru
Rússia, St. Petersburg, 195251

Bibliografia

  1. B. Charlot, W. Sun, K. Yamashita, et al., “Bistable nanowire for micromechanical memory,” J. Micromech. Microeng. 4, 18 (2008). https://doi.org/10.1088/0960-1317/18/4/045005
  2. Varat Intaraprasonk and Shanhui Fan, “Nonvolatile bistable all-optical switch from mechanical buckling,” Appl. Phys. Lett. 98, 241104 (2011). https://doi.org/10.1063/1.3600335
  3. R. L. Harne and K. W. Wang, “A bifurcation-based coupled linear-bistable system for microscale mass sensing,” J. Sound Vibr. 333, 2241-2252 (2014). https://doi.org/10.1016/j.jsv.2013.12.017
  4. Uno Akiko, Hirai Yoshikazu, Tsuchiya Toshiyuki, and Tabata Osamu, “Mathematical modeling and analysis of mems deformable mirror actuated by electrostatic piston array,” Electr. Eng. Japan 204 (2), 50-60 (2018). https://doi.org/10.1002/eej.23104
  5. D. Davidovikj, D. Bouwmeester, H. S. J. van der Zant, and P. G. Steeneken, “Graphene gas pumps,” 2D Materials 5 (3), 031009 (2018). https://doi.org/10.1088/2053-1583/aac0a8
  6. A. Z. Hajjaj, N. Jaber, S. Ilyas, et al., “Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances,” Int. J. Non-Lin. Mech. 119, 103328 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103328
  7. L. Medina, R. Gilat, and S. Krylov, “Symmetry breaking in an initially curved micro beam loaded by a distributed electrostatic force,” Int. J. Solids Struct. 49, 1864-1876 (2012). https://doi.org/10.1016/j.ijsolstr.2012.03.040
  8. L. Medina, R. Gilat, and S. Krylov, “Symmetry breaking in an initially curved pre-stressed micro beam loaded by a distributed electrostatic force,” Int. J. Solids Struct. 51, 2047 (2014). https://doi.org/10.1016/j.ijsolstr.2014.02.010
  9. Shojaeian Milad, Tadi Beni Yaghoub, Ataei Hossein, “Size-dependent snap-through and pull-in instabilities of initially curved pre-stressed electrostatic nano-bridges,” J. Phys. D: Appl. Phys. 49, 295303 (2016). https://doi.org/10.1088/0022-3727/49/29/295303
  10. L. Medina and A. Seshia, “Bistability and simultaneous mode actuation in electrostatically actuated initially curved coupled micro beams,” Int. J. Non-Lin. Mech. 126, 103549 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103549
  11. L. Medina, R. Gilat, B. Ilic, and S. Krylov, “Single electrode bidirectional switching of latchable prestressed bistable micromechanical beams,” IEEE Sensors J. 21 (19), 21349-21358 (2021). https://doi.org/10.1109/JSEN.2021.3103265
  12. N. F. Morozov, D. A. Indeitsev, N. V. Mozhgova, et al., “Equilibrium forms of an initially curved Bernoulli–Euler beam in electric and thermal fields,” Dokl. Phys. 68, 56-61 (2023). https://doi.org/10.1134/S1028335823020039
  13. D. A. Indeitsev, N. V. Mozhgova, A. V. Lukin, et al., “Model of a micromechanical mode-localized accelerometer with an initially curved microbeam as a sensitive element,” Mech. Solids 58, 779-792 (2023). https://doi.org/10.3103/S0025654422601355
  14. S. Saghir, M. L. Bellaredj, A. Ramini, and M. I. Younis, “Initially curved microplates under electrostatic actuation: Theory and experiment,” J. Micromech. Microeng. 26, 095004 (2016). https://doi.org/10.1088/0960-1317/26/9/095004
  15. A. V. Lukin, I.A. Popov, and D. Yu. Skubov, “Nonlinear dynamics and stability of microsystems engineering elements,” Sci. Tech. J. Informat. Technol., Mech. Optics 17 (6), 1107-1115 (2017). https://doi.org/10.17586/2226-1494-2017-17-6-1107-1115
  16. Mergen H. Ghayesh and Hamed Farokhi, “Nonlinear behaviour of electrically actuated microplate-based MEMS resonators,” Mech. Syst. Signal Proc. 109, 220-234 (2018). https://doi.org/10.1016/j.ymssp.2017.11.043
  17. S. Saghir and M. I. Younis, “An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation,” Acta Mech. 229, 2909-2922 (2018). https://doi.org/10.1007/s00707-018-2141-3
  18. Das Mainakh and Bhushan Anand, “Investigation of an electrostatically actuated imperfect circular microplate under transverse pressure for pressure sensor applications,” Eng. Res. Express. 3 (4), 045023 (2021). https://doi.org/10.1088/2631-8695/ac3771
  19. Jallouli Aymen, Kacem Najib, Bourbon Gilles, et al., “Experimental characterization of nonlinear static and dynamic behaviors of circular capacitive microplates with initial deflection,” Nonlin. Dyn. 103, 2329-2343 (2021). https://doi.org/10.1007/s11071-021-06242-4
  20. Das Mainakh and Bhushan Anand, “Investigation of the effects of residual stress on static and dynamic behaviour of an imperfect MEMS circular microplate,” Iran. J. Sci. Technol. Trans. Mech. Eng. 47, 2143–2158 (2023). https://doi.org/10.1007/s40997-023-00627-z
  21. L. Medina, R. Gilat, and S. Krylov, “Bistable behavior of electrostatically actuated initially curved micro plate,” Sens. Actuators, A 248, 193-198 (2016). https://doi.org/10.1016/j.sna.2016.07.027
  22. L. Medina, R. Gilat, and S. Krylov, “On the usage of Berger’s model for electrostatically actuated circular curved micro plates,” in Proc. of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 4: 22nd Design for Manufacturing and the Life Cycle Conference; 11th International Conference on Micro- and Nanosystems, Cleveland, Ohio, USA, August 6–9, 2017 (ASME, 2017), pp. V004T09A006. https://doi.org/10.1115/DETC2017-67523
  23. L. Medina, R. Gilat, and S. Krylov, “Bistability criterion for electrostatically actuated initially curved micro plates,” Int. J. Eng. Sci. 130, 75–92 (2018). https://doi.org/10.1016/j.ijengsci.2018.05.006
  24. A. Asher, E. Benjamin, L. Medina, et al., “bistable micro caps fabricated by sheet metal forming,” J. Micromech. Microeng. 30, 065002 (2020). https://doi.org/10.1088/1361-6439/ab7f52
  25. L. Medina, R. Gilat, and S. Krylov, “Necessary and sufficient criteria for bistability in electrostatically actuated initially curved pre-stressed micro-plates,” Int. J. Mech. Sci. 223, 107255 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107255
  26. A. Asher, R. Gilat, and S. Krylov, “Natural frequencies and modes of electrostatically actuated curved bell-shaped microplates,” Appl. Sci. 12 (5), 2704 (2022). https://doi.org/10.3390/app12052704
  27. L. Medina, “Effect of membrane load on the stability of an electrostatically actuated initially curved circular micro plate,” J. Appl. Mech. 90 (3), 031002 (2023). https://doi.org/10.1115/1.4056059
  28. N. F. Morozov, “On the existence of a non-symmetric solution in the problem of large deflections of a circular plate with a symmetric load,” Izv. Vyssh. Uchebn. Zaved. Mat., Nо. 2, 126–129 (1961).
  29. N. F. Morozov and P. E. Tovstik, “Buckling forms of a compressed plate on an elastic foundation,” Dokl. Phys. 57, 335–339 (2012). https://doi.org/10.1134/S1028335812090030
  30. N. F. Morozov and P. E. Tovstik, “Buckling modes of a compressed plate on an elastic substrate,” Mech. Solids 47, 622–627 (2012). https://doi.org/10.3103/S0025654412060027
  31. S. M. Bauer, S. V. Kashtanova, N. F. Morozov, et al., “Stability of a nanoscale-thickness plate weakened by a circular hole,” Dokl. Phys. 59, 416–418 (2014). https://doi.org/10.1134/S1028335814090043
  32. S. M. Bauer, S. V. Kashtanova, N. F. Morozov, and B. N. Semenov, “Stability loss of an infinite plate with a circular inclusion under uniaxial tension,” Vestn. St. Petersb. Univ. Math. 50, 161–165 (2017). https://doi.org/10.3103/S1063454117020030
  33. S. M. Bauer and E. B. Voronkova, “On non-axisymmetric buckling modes of inhomogeneous circular plates,” Vestn. St. Petersb. Univ. Math. 54, 113–118 (2021). https://doi.org/10.1134/S1063454121020023
  34. S. M. Bauer, D. A. Indeitsev, B. N. Semenov, and E. B. Voronkova, “Asymmetric buckling of orthortropic plates under normal pressure,” in Advanced Structured Materials, Vol. 180: Advances in Solid and Fracture Mechanics, Ed. by H. Altenbach, S. M. Bauer, A.K. Belyaev, et al. (Springer, Cham, 2022), pp. 13–18. https://doi.org/10.1007/978-3-031-18393-5_2
  35. A. H. Nayfeh and P. F. Pai, Linear and Nonlinear Structural Mechanics (Wiley-VCH, 2004).
  36. MATLAB. Version R2021b (The MathWorks Inc., Natick, Massachusetts, 2021).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024