Features of the dynamics of a rotating shaft with nonlinear models of internal damping and elasticity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper analyzes the influence of nonlinear (cubic) internal damping (in the Kelvin–Feucht model) and cubic nonlinearity of elastic forces on the dynamics of a rotating flexible shaft with a distributed mass. The shaft is modeled by a Bernoulli–Euler rod using the Green function, the discretization and reduction of the problem of rotating shaft dynamics to an integral equation are performed. It is revealed that in such a system there is always a branch of limited periodic movements (self-oscillations) at a supercritical rotation speed. In addition, with low internal damping, the periodic branch continues into the subcritical region: when the critical velocity is reached, the subcritical Poincare–Andronov–Hopf bifurcation is realized and there is an unstable branch of periodic movements, below the branch of stable periodic self-oscillations (the occurrence of hysteresis with a change in rotation speed). With an increase in the internal friction coefficient, the hysteresis phenomenon disappears and at a critical rotation speed, a soft excitation of self-oscillations of the rotating shaft occurs through the supercritical Poincare–Andronov–Hopf bifurcation.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Azarov

Bauman Moscow State Technical University

Хат алмасуға жауапты Автор.
Email: 13azarov.ru@gmail.com
Ресей, Moscow

A. Gouskov

Bauman Moscow State Technical University; Mechanical Engineering Research Institute of RAN

Email: gouskov_am@mail.ru
Ресей, Moscow; Moscow

G. Panovko

Mechanical Engineering Research Institute of RAN

Email: gpanovko@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Bolotin V. Nonconservative problems of the theory of elastic stability. M.: Nauka, 1961 (in Russian).
  2. Ding Q., Cooper J., Leung A. Hopf bifurcation analysis of a rotor/seal system // J. Sound Vibr. 2002. V. 252. № 5. P. 817–833. https://doi.org/10.1006/jsvi.2001.3711
  3. Karpenko E.V., Pavlovskaia E.E. Bifurcation analysis of a preloaded Jeffcott rotor // Chaos, Sol. Fract. 2003. V. 15. № 2. P. 407–416. https://doi.org/10.1016/S0960-0779(02)00107-8
  4. Ehrich F. Observations of subcritical, superharmonic and chaotic response in rotor dynamics // Vibr. Acous. 1992. № 114. P. 93–114. https://doi.org/10.1115/1.2930240
  5. Kimpbal A. Internal friction as a cause of shaft whirling // Phil. Mag. 1925. V. 49. P. 724–727.
  6. Newkirk B.L. Saft wipping // General Electric Rev. 1924. V. 27. № 3. P. 169–178.
  7. Genta G. et al. Vibration dynamics and control. NY: Springer, 2009.
  8. Li Y. et al. Dynamic modelling and vibration analysis of a bolted spigot joint structure considering mating interface friction: simulation and experiment // Nonlinear Dynamics. 2024. P. 1–24. https://doi.org/10.1007/s11071-024-09365-6
  9. Schwarz U. Continuum mechanics / Heilenberg University, 2023. URL: https://www.thphys.uni-heidelberg.de/~biophys/PDF/Skripte/Script_Continuum_Mechanics.pdf (date of application 01.04.2024).
  10. Lewandowski R., Chorążyczewski B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers // Computers & Structures. 2010. V. 88. № 1–2. P. 1–17.
  11. Hetzler H., Boy F. Internal dissipation and self-excited ocillations in rotating machinery: internal friction vs. internal viscous damping // International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2017). 2017.
  12. Azarov A.A., Gouscov A.M., Panovko G.Y. Dynamics of a flexible disk rotor under a point contact with discrete viscoelastic oscillation limiters // J. Mach. Manufac. Reliability. 2023. № 1. P. 26–37. https://doi.org/10.31857/S0235711923010029
  13. Panovko Y.G. Internal friction in oscillations of elastic systems. M.: Fizmatgiz, 1960 (in Russian).
  14. Svetlitsky V.A. Mechanics of rods. M.: Vyshaya Shkola, 1987 (in Russian).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Calculation scheme of a rotating shaft: 1 – precession trajectory, 2 – direction of rotation.

Жүктеу (13KB)
3. Fig. 2. Argand diagram in the range of rotation speeds.

Жүктеу (15KB)
4. Fig. 3. Displacements of the middle node at the supercritical speed at , , : (a) , ; (b) , ; (c) , .

Жүктеу (41KB)
5. Fig. 4. Bifurcation diagram along the upper periodic branch, A – limit point, B – subcritical bifurcation ( , , , , ).

Жүктеу (22KB)
6. Fig. 5. Precession of the cross-section of the rod corresponding to the middle node.

Жүктеу (9KB)
7. Fig. 6. Distribution of the average value of the precession coefficient along the upper stable branch ( , , , , ).

Жүктеу (15KB)
8. Fig. 7. Trajectories of collocation nodes during steady motion (black lines) and the shape of the curved axis (red lines) ( , , , , , ).

Жүктеу (19KB)
9. Fig. 8. Dependence of and on the coefficient (a); distribution of the amplitudes of the displacements of the middle node during subcritical (b) and supercritical (c) bifurcations ( , , , ).

Жүктеу (44KB)

© Russian Academy of Sciences, 2024