Measurement of elastic characteristics of single-crystals of a nickel-base superalloy by speckle interferometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The elastic properties of single crystals of a nickel-base superalloy VGM7 have been investigated by speckle interferometry. Plate-shaped specimens of different crystallographic orientations were loaded under pure shear conditions and speckle interference patterns were imaged. Numerical processing of the interference patterns allowed us to determine the values of Young’s modulus in directions [001] and [011], E001= 138 GPa and E001= 241 GPa, the basic value of Poisson’s ratio ν0= 0.39 in the coordinate system ⟨001⟩, as well as its minimum and maximum values νmin= −0.10 and νmax= 0.69 under longitudinal loading along [101] and transverse deformation along [101¯] and [010], respectively. Using the measured values E001E011ν0νmin and νmax the single-crystal elastic stiffnesses  C11= 264 GPa, C12= 166 GPa and  C44= 133 GPa, and elastic compliances  S11= 7.35 TPa–1S12= –2.84 TPa–1 and S44= 7.52 TPa–1 we calculated. The applied method allows one to unambiguously determine the sign of Poisson’s ratio and, therefore, it should be recommended for studying the elastic properties of auxetic materials, for which determination of the sign of Poisson’s ratio is of great importance.

Full Text

Restricted Access

About the authors

А. I. Epishin

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Author for correspondence.
Email: a.epishin2021@gmail.com
Russian Federation, Chernogolovka, Moscow Region

I. N. Odintsev

Mechanical Engineering Research Institute RAS

Email: a.epishin2021@gmail.com
Russian Federation, Moscow

D. S. Lisovenko

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Russian Federation, Moscow

N. V. Petrushin

All-Russin Research Institute of Aviation Materials (VIAM) NRC “Kurchatov Institute”

Email: a.epishin2021@gmail.com
Russian Federation, Moscow

I. L. Svetlov

All-Russin Research Institute of Aviation Materials (VIAM) NRC “Kurchatov Institute”

Email: a.epishin2021@gmail.com
Russian Federation, Moscow

References

  1. Köster W., Franz H. Poisson’s ratio for metals and alloys // Metallurgical Reviews. 1961. V. 6. № 21. P. 1–55. https://doi.org/10.1179/mtlr.1961.6.1.1
  2. Epishin A.I., Lisovenko D.S. Influence of the crystal structure and type of interatomic bond on the elastic properties of monatomic and diatomic cubic crystals // Mech. Solids. 2022. V. 57. № 6. P. 1344–1358. https://doi.org/10.3103/S0025654422060206
  3. Evans K., Nkansah M., Hutchinson I., Rogers S.C. Molecular network design // Nature. 1991. V. 353. № 6340. P. 124–125. https://doi.org/10.1038/353124a0
  4. Gorodtsov V.A., Lisovenko D.S. Auxetics among materials with cubic anisotropy // Mech. Solids. 2020. V.55. № 4. P. 461–474. https://doi.org/10.3103/S0025654420040044
  5. Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A. Negative Poisson’s ratio for cubic crystals and nano/microtubes // Phys. Mesomech. 2014. V. 17. № 2. P. 97–115. http://dx.doi.org/10.1134/S1029959914020027
  6. Epishin A.I. Structure, anisotropy of physico-mechanical properties and mechanisms of high-temperature creep of single crystals of heat-resistant nickel alloys: dissertation, PhD, Moscow: MISiS 2007. (In Russian)
  7. Epishin A.I., Lisovenko D.S. Extreme values of Poisson’s ratio of cubic crystals // Technical Physics. 2016. V. 61. № 10. P. 1516–1524. http://dx.doi.org/10.1134/S1063784216100121
  8. Wiederhorn S.M., Fields R.J. Measurement methods for materials properties: Elasticity, Handbook of Measurement Methods. Springer-Verlag, 2017. https://www.nist.gov/publications/measurement-methods-materials-properties-elasticity (Accessed September 4, 2024).
  9. Bell J.F. The Experimental foundations of solid mechanics. Mechanics of Solid. V. 1. Springer. 1973.
  10. Svetlov I.L., Epishin A.I., Krivko A.I. et al. Anisotropy of Poisson ratio of nickel base alloy single crystals // Dokl. Akad. Nauk SSSR. 1988. V. 302. № 6. P. 1372–1375.
  11. Swain D., Thomas B.P., Selvan S.K. and Philip J. Measurement of elastic properties of materials employing 3-D DIC in a Cornu’s experiment // Mater. Res. Express. 2021. V. 8. P. 125201. https://doi.org/10.1088/2053-1591/ac452d
  12. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monocrystalline heat-resistant nickel alloy of a new generation with low density // Aviation Materials and Technologies. 2015. № 2. P. 14–25. (In Russian) https://doi.org/10.18577/2071-9140-2015-0-2-14-25
  13. Kablov E.N., Petrushin N.V. Computer method of designing foundry heat-resistant nickel alloys // Foundry heat-resistant alloys. The S.T. Kishkin effect. M.: Nauka, 2006. P. 56–78. (In Russian)
  14. Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. Development of technologies and equipment for producing blades of the hot path of gas turbine engines from heat-resistant alloys with directional and monocrystalline structure // Proceedings of VIAM. 2023. № 7 (125). Article 01. (In Russian) https://doi.org/10.18577/2307-6046-2023-0-7-3-14
  15. Müller L., Glatzel U., Feller-Kniepmeier M. Modelling thermal misfit stresses in nickel-base superalloys containing high volume fraction of γ′ phase // Acta Metall. Mater. 1992. V. 40. № 6. P. 1321-1327. https://doi.org/10.1016/0956-7151(92)90433-F
  16. Kuzmina N.A., Pyankova L.A. Control of the crystallographic orientation of single-crystal castings of nickel-base superalloys by X-ray diffractometry // Proceedings of VIAM. 2019. № 12 (84). P. 11–19. (In Russian) https://doi.org/10.18577/2307-6046-2019-0-12-11-19
  17. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraia V.N., Gavrilin O.S. Single crystals of nickel-base superalloys. Moscow: Mashinostroenie. 1997. 333 P. (In Russian)
  18. Timoshenko S.P., Voinowsky-Krieger S. Theory of plates and shells. McGraw-Hills 1959. 580 p.
  19. Lehknitskii S.R. Theory of elasticity of an anisotropic body. NY: Dover Publications, 1981.
  20. Razumovsky I.A. Interference-optical methods of deformable solid mechanics. M. Bauman Moscow State Technical University, 2007. 240 P. (In Russian)
  21. Odintsev I.N. Development and application of the methodology of coherent optics to the study of deformation properties of structural materials. The abstract. Dissertation of the Candidate of Technical Sciences (In Russian) https://new-disser.ru/_avtoreferats/01003421090.pdf
  22. Epishin A.I., Lisovenko D.S. Comparison of isothermal and adiabatic elasticity characteristics of the single crystal nickel-based superalloy CMSX-4 in the temperature range between room temperature and 1300 °C // Mech. Solids. 2023. V. 58. № 5. P. 1587–1598. https://doi.org/10.3103/S0025654423601301
  23. Alers G.A., Neighbours J.R., Sato H. Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy // J. Phys. Chem. Solids. 1960. V. 13. № 1–2. P. 40–55. https://doi.org/10.1016/0022-3697(60)90125-6.
  24. Prikhodko S.V., Yang, H., Ardell, A.J. et al. Temperature and composition dependence of the elastic constants of Ni3Al // Metall. Mater. Trans. A. 1999. V. 30. P. 2403–2408. https://doi.org/10.1007/s11661-999-0248-9
  25. Svetlov I.L., Sukhanov N.N., Krivko A.I., etc. The temperature-orientation dependence of the characteristics of short-term strength, Young’s modulus and the coefficient of linear expansion of single crystals of the ZHS6F alloy // Problems of strength. 1987. № 1. P. 51–56. (In Russian)
  26. Solovyov A.E., Golynets S.A., Khvatsky K.K. Anisotropy of tensile elasticity characteristics of monocrystalline heat-resistant nickel alloys // Proceedings of VIAM. 2017. № 10 (58). P. 112–118. (In Russian) https://doi.org/10.18577/2307-6046-2017-0-10-12-12
  27. Epishin A., Fedelich B., Finn M. et al. I. Investigation of elastic properties of the single-crystal nickel-base superalloy CMSX-4 in the temperature interval between room temperature and 1300 °C // Crystals 2021. V. 11. №. 2. P. 152. https://doi.org/10.3390/cryst11020152
  28. Siebörger D., Knake H., Glatzel U. Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases // Mater. Sci. Eng. A. 2001. V. 298. № 1–2, P. 26–33. https://doi.org/10.1016/S0921-5093(00)01318-6
  29. Kuhn H.-A., Sockel H. G. Contributions of the different phases of two nickel-base superalloys to the elastic behaviour in a wide temperature range // Phys. Stat. Sol. A. 1990. V. 119. P. 93–105. https://doi.org/10.1002/pssa.2211190112
  30. Demtröder K., Eggeler G., Schreuer J. Influence of microstructure on macroscopic elastic properties and thermal expansion of nickel-base superalloys ERBO/1 and LEK94 // Mat.-wiss. u. Werkstofftech. 2015. V. 46. № 6. P. 563–576. https://doi.org/10.1002/mawe.201500406
  31. Yang S.W. Elastic constants of a monocrystalline nickel-base superalloy // Metall. Trans. A. 1985. V. 16. P. 661–665. https://doi.org/10.1007/BF02814240

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of cutting plate samples from single crystals of VZhM7 alloy.

Download (10KB)
3. Fig. 2. Calculation scheme for interpretation of sample testing.

Download (13KB)
4. Fig. 3. Design (a) and general view (b) of the loading device, spatial position of the sample before (c) and after (d) compensation of rotations as a whole.

Download (36KB)
5. Fig. 4. Speckle interference patterns recorded during pure bending of single-crystal plates of VZhM7 alloy of different orientations, see the indicated direction of the x and z axes. The nature of the plate warping is shown qualitatively below.

Download (69KB)
6. Fig. 5. Orientation dependence of elastic characteristics of single crystals of VZhM7 alloy: Young's modulus (a), minimum (b) and maximum (c) values ​​of Poisson's ratio for arbitrary orientation of the loading axis z. The graphs are constructed using the obtained elastic compliances, the values ​​in brackets are the measurement results.

Download (130KB)

Copyright (c) 2024 Russian Academy of Sciences