T-stress in an orthotropic strip with a central semi-infinite crack loaded far from the crack tip
- Authors: Ustinov K.B.1
-
Affiliations:
- A. Yu. Ishlinsky Institute for problem in Mechanics RAS
- Issue: No 4 (2024)
- Pages: 150-165
- Section: Articles
- URL: https://clinpractice.ru/1026-3519/article/view/673028
- DOI: https://doi.org/10.31857/S1026351924040104
- EDN: https://elibrary.ru/UCLGVK
- ID: 673028
Cite item
Abstract
Based on an exact analytical solution to the two-dimensional problem of a strip of orthotropic material with the main axes of the elasticity tensor directed parallel and perpendicular to its boundaries and a central semi-infinite crack, expressions for T-stresses are obtained. A balanced load system in the form of four independent active loading modes is assumed to be applied sufficiently far from the crack tip. It is shown that for two (antisemimetric) loading modes the T-stresses are equal to zero, and for the other two (symmetric) they are determined by one or two parameters composed of components of the elasticity tensor. The dependences of T-stresses for symmetric loading modes are obtained in the form of double integrals from combinations of elementary functions depending on one of the dimensionless parameters; the second of the dimensionless parameters is included in the expression for T-stresses of only one of the modes in the form of a multiplicative coefficient.
Full Text

About the authors
K. B. Ustinov
A. Yu. Ishlinsky Institute for problem in Mechanics RAS
Author for correspondence.
Email: ustinov@ipmnet.ru
Russian Federation, Moscow
References
- Irwin G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate // J. Appl. Mech. 1957. V. 24. P. 361–364. https://doi.org/10.1115/1.4011547
- Yarema S.Ya., Ivanitskaya G.S. Limit equilibrium and development of oblique cracks. Review of criteria // Phys.-Chem. mechanics of materials. 1986. V. 1. P. 45–57 [In Russsian].
- Cotterell B. Notes on Paths and Stability of Cracks // Int. J. Fract. Mech. 1966. V. 2. № 3. P. 526–533. https://doi.org/10.1007/BF00193691
- Larsson S.G., Carlsson A.J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials // J. Mech. Phys. Solids. 1973. V. 21. № 4. P. 263–277. https://doi.org/10.1016/0022-5096(73)90024-0
- Zhou R., Zhu P, Li Z. The Shielding Effect of the Plastic Zone at Mode-II Crack Tip // Int. J. Fract. 2011. V. 171. № 2. P. 195–200. https://doi.org/10.1007/s10704-011-9627-5
- Williams J., Ewing P.D. Fracture Under Complex Stress – Angled Crack Problem // Int. J. Fract. Mech. 1972. V. 8. № 4. P. 441–446. https://doi.org/10.1007/BF00191106
- Finnie I., Saith A. A note on the angled crack problem and the directional stability of cracks // Int. J. Fract. 1973. V. 9. № 4. P. 484–486. https://doi.org/10.1007/BF00036331
- Kfouri A.P. Some evaluations of the elastic T-term using Eshelby’s method // Int. J. Fract. 1986. V. 30. P. 301–315. https://doi.org/10.1007/BF00019710
- Kim J.-H., Vlassak J.J. T-stress of a bi-material strip under generalized edge loads // Int. J. Frac. 2006. V. 142. P. 315–322. https://doi.org/10.1007/s10704-006-9033-6
- Kurguzov V.D., Demeshkin A.G., Kuznetsov D.A. Three-point bending of eccentric edge crack specimens under mixed mode loading // Journal of Applied Mechanics and Technical Physics. 2023. V. 16. № 3. P. 345–357. https://doi.org/10.7242/1999-6691/2023.16.3.29
- Ayatollahi M.R., Pavier M.J., Smith D.J. Determination of T-stress from fi nite element analysis for mode I and mixed mode I/II loading // Int. J. Fract. 1998. V. 91. P. 283–298. https://doi.org/10.1023/A:1007581125618
- Gupta M., Alderliesten R.C., Benedictus R. A review of T-stress and its effects in fracture mechanics // Eng. Frac. Mech. 2015. V. 134. P. 218–241. https://doi.org/10.1016/j.engfracmech.2014.10.013
- Aleksandrov V.M., Mkhitaryan S.M. Contact problems for bodies with thin coatings and interlayers. M.: Nauka, 1983. 487 p. [In Russsian].
- Suo Z., Hutchinson J.W. Interface crack between two elastic layers // Int. J. Fract. 1990. V. 43. P. 1–18. https://doi.org/10.1007/BF00018123
- Hutchinson, J.W., Suo, Z. Mixed Mode Cracking in Layered Materials // Adv. Appl. Mech. Ed. J.W. Hutchinson, T.Y. Wu. 1992. V. 29. P. 63–191. https://doi.org/10.1016/S0065-2156(08)70164-9
- Andrews M.G., Massabò R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Eng. Fract. Mech. 2007. V. 74. № 17. P. 2700–2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
- Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. Mech. Phys. Solids 2004. V. 52. № 1. P. 193–214. https://doi.org/10.1016/S0022-5096(03)00070-X
- Massabò R., Brandinelli L., Cox B.N. Mode i weight functions for an orthotropic double cantilever beam // Int. J. Eng. Sci. 2003. V. 41. № 13–14. P. 1497–1518. https://doi.org/10.1016/S0020-7225(03)00029-6
- Ustinov K.B. On influence of substrate compliance on delamination and buckling of coatings // Eng. Failure Anal. 2015. V. 47. № 14. P. 338–344. https://doi.org/10.1016/j.engfailanal.2013.09.022
- Begley M.R., Hutchinson J.W. The Mechanics and Reliability of Films, Multilayers and Coatings. Cambridge University Press, 2017. https://doi.org/10.1017/9781316443606
- Banks-Sills L. Interface Fracture and Delaminations in Composite Materials, Springer Briefs in Applied Sciences and Technology. Cham: Springer, International Publishing, 2018.
- Glagolev V.V., Markin A.A. Influence of the model of the behavior of a thin adhesion layer on the value of the j-integral // Mech. Solids. 2022. V. 57. № 2. P. 278–285. https://doi.org/10.3103/S0025654422020169
- Glagolev V.V., Markin A.A. Limit States of Adhesive Layers under Combined Loading // Mech. Solids. 2023. V. 58. № 6. P. 1960–1966. https://doi.org/10.3103/S0025654423600204
- Kurguzov V.D. Modeling of delamination of thin films under compression // Computational continuum mechanics. 2014. V. 7. № 1. P. 91–99 [In Russian].
- Vatulyan A.O., Morozov K.L. Investigation of Delamination from an Elastic Base Using a Model with Two Coefficients of Subgrade Reaction // Mech. Solids. 2020. № 2. P. 207–217. https://doi.org/10.3103/S002565442002017X
- Vatulyan A.O., Morozov K.L. Study of the process of delamination of a non-uniform coating // Appl. Mech. Tech. Phys. 2021. V. 62. № 6 (370). P. 138–145 [In Russian].
- Popov G.Ya. Bending of a semi-infinite slab lying on a linearly deformable base // PMM. 1961. V. 2. P. 342–355 [In Russian].
- Salganik R.L. On brittle fracture of glued bodies // PMM. 1963. V. 27. № 5. P. 957–962 [In Russian].
- Fichter W.B. The stress intensity factor for the double cantilever beam // Int. J. Fract. 1983. V. 22. № 2. P. 133–143. https://doi.org/10.1007/BF00942719
- Foote R.M.L., Buchwald V.T. An exact solution for the stress intensity factor for a double cantilever beam // Int. J. Fract. 1985. V. 29. № 3. P. 125–134. https://doi.org/10.1007/BF00034313
- Zlatin A.N., Khrapkov A.A. A Semi-Infinite Crack Parallel to the Boundary of the Elastic Half-Plane // Sov. Phys. Dokl. 1986. V. 31. P. 1009–1010.
- Салганик Р.Л., Устинов К.Б. Задача о деформировании упруго заделанной пластины, моделирующей частично отслоившееся от подложки покрытие (плоская деформация) // Изв. РАН. МТТ. 2012. № 4. С. 50–62. https://doi.org/10.3103/S0025654412040061
- Georgiadis H.G., Papadopoulos G.A. Elastostatics of the orthotropic double-cantilever-beam fracture specimen // Z. Angew. Math. Phys. 1990. V. 41. № 6. P. 889–899. https://doi.org/10.1007/BF00945841
- Suo Z. Delamination specimens for orthotropic materials // J. Appl. Mech. 1990. V. 57. № 3. P. 627–634. https://doi.org/10.1115/1.2897068
- Ustinov K.B., Lisovenko D.S., Chentsov A.V. Orthotropic strip with a central semi-infinite crack under arbitrary normal loads applied far from the crack tip // Bulletin of the Samara State Technical University. Series: Physical and mathematical sciences. 2019. V. 23. № 4. P. 657–670 [ In Russian]. https://doi.org/10.14498/vsgtu1736
- Ustinov K.B., Massabò R., Lisovenko D. Orthotropic strip with central semi-infinite crack under arbitrary loads applied far apart from the crack tip. Analytical solution // Eng. Failure Analysis 2020. V. 110. P. 104410. https://doi.org/10.1016/j.engfailanal.2020.104410
- Ustinov K.B., Borisova N.L. Splitting of a strip consisting of two identical orthotropic half-strips with isotropy axes symmetrically inclined to the interface // Mech. Solids, submitted. 1990. V. 41. P. 889–899.
- Ustinov K.B., Idrisov, D.M. On delamination of bi-layers composed by orthotropic materials: exact analytical solutions for some particular cases // ZAMM. Z. Angew. Math. Mech. 2021. V. 101. № 4. P. e202000239. https://doi.org/10.1002/zamm.202000239
- Ustinov K.B., Monetto I., Massabò R. Analytical solutions for an isotropic strip with a central semi-infinite crack: T-stresses, displacements of boundaries, stress intensity factor due to a force acting at the crack // to be published 2024.
- Lekhnitsky. Theory of elasticity of an anisotropic elastic body 1963с
- Ustinov K. On semi-infinite interface crack in bi-material elastic layer // Eur. J. Mech. A Solids. 2019. V. 75. P. 56–69. https://doi.org/10.1016/j.euromechsol.2019.01.013
- Ustinov K., Massabò R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. Sol. Struct. 2022. 248 P. 111600 https://doi.org/10.1016/j.ijsolstr.2022.111600
- Noble B. Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations . Physics Today. 1959. 12, 9, 50. https://doi.org/10.1063/1.3060974.
- Gakhov F.D. Boundary Value Problems. 1966. Pergamon Press.
- Khrapkov A. Winer-Hopf Method in Mixed Elasticity Theory Problems. 2001. B.E. Vedeneev VNIIG Publishing House.
- Doetsc G. Anleitung zum praktischen Gebrauch der Laplace-transformations und der Z-transformations, Oldenbourg, München, 1956.
Supplementary files
