T-stress in an orthotropic strip with a central semi-infinite crack loaded far from the crack tip

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on an exact analytical solution to the two-dimensional problem of a strip of orthotropic material with the main axes of the elasticity tensor directed parallel and perpendicular to its boundaries and a central semi-infinite crack, expressions for T-stresses are obtained. A balanced load system in the form of four independent active loading modes is assumed to be applied sufficiently far from the crack tip. It is shown that for two (antisemimetric) loading modes the T-stresses are equal to zero, and for the other two (symmetric) they are determined by one or two parameters composed of components of the elasticity tensor. The dependences of T-stresses for symmetric loading modes are obtained in the form of double integrals from combinations of elementary functions depending on one of the dimensionless parameters; the second of the dimensionless parameters is included in the expression for T-stresses of only one of the modes in the form of a multiplicative coefficient.

Full Text

Restricted Access

About the authors

K. B. Ustinov

A. Yu. Ishlinsky Institute for problem in Mechanics RAS

Author for correspondence.
Email: ustinov@ipmnet.ru
Russian Federation, Moscow

References

  1. Irwin G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate // J. Appl. Mech. 1957. V. 24. P. 361–364. https://doi.org/10.1115/1.4011547
  2. Yarema S.Ya., Ivanitskaya G.S. Limit equilibrium and development of oblique cracks. Review of criteria // Phys.-Chem. mechanics of materials. 1986. V. 1. P. 45–57 [In Russsian].
  3. Cotterell B. Notes on Paths and Stability of Cracks // Int. J. Fract. Mech. 1966. V. 2. № 3. P. 526–533. https://doi.org/10.1007/BF00193691
  4. Larsson S.G., Carlsson A.J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials // J. Mech. Phys. Solids. 1973. V. 21. № 4. P. 263–277. https://doi.org/10.1016/0022-5096(73)90024-0
  5. Zhou R., Zhu P, Li Z. The Shielding Effect of the Plastic Zone at Mode-II Crack Tip // Int. J. Fract. 2011. V. 171. № 2. P. 195–200. https://doi.org/10.1007/s10704-011-9627-5
  6. Williams J., Ewing P.D. Fracture Under Complex Stress – Angled Crack Problem // Int. J. Fract. Mech. 1972. V. 8. № 4. P. 441–446. https://doi.org/10.1007/BF00191106
  7. Finnie I., Saith A. A note on the angled crack problem and the directional stability of cracks // Int. J. Fract. 1973. V. 9. № 4. P. 484–486. https://doi.org/10.1007/BF00036331
  8. Kfouri A.P. Some evaluations of the elastic T-term using Eshelby’s method // Int. J. Fract. 1986. V. 30. P. 301–315. https://doi.org/10.1007/BF00019710
  9. Kim J.-H., Vlassak J.J. T-stress of a bi-material strip under generalized edge loads // Int. J. Frac. 2006. V. 142. P. 315–322. https://doi.org/10.1007/s10704-006-9033-6
  10. Kurguzov V.D., Demeshkin A.G., Kuznetsov D.A. Three-point bending of eccentric edge crack specimens under mixed mode loading // Journal of Applied Mechanics and Technical Physics. 2023. V. 16. № 3. P. 345–357. https://doi.org/10.7242/1999-6691/2023.16.3.29
  11. Ayatollahi M.R., Pavier M.J., Smith D.J. Determination of T-stress from fi nite element analysis for mode I and mixed mode I/II loading // Int. J. Fract. 1998. V. 91. P. 283–298. https://doi.org/10.1023/A:1007581125618
  12. Gupta M., Alderliesten R.C., Benedictus R. A review of T-stress and its effects in fracture mechanics // Eng. Frac. Mech. 2015. V. 134. P. 218–241. https://doi.org/10.1016/j.engfracmech.2014.10.013
  13. Aleksandrov V.M., Mkhitaryan S.M. Contact problems for bodies with thin coatings and interlayers. M.: Nauka, 1983. 487 p. [In Russsian].
  14. Suo Z., Hutchinson J.W. Interface crack between two elastic layers // Int. J. Fract. 1990. V. 43. P. 1–18. https://doi.org/10.1007/BF00018123
  15. Hutchinson, J.W., Suo, Z. Mixed Mode Cracking in Layered Materials // Adv. Appl. Mech. Ed. J.W. Hutchinson, T.Y. Wu. 1992. V. 29. P. 63–191. https://doi.org/10.1016/S0065-2156(08)70164-9
  16. Andrews M.G., Massabò R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Eng. Fract. Mech. 2007. V. 74. № 17. P. 2700–2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
  17. Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. Mech. Phys. Solids 2004. V. 52. № 1. P. 193–214. https://doi.org/10.1016/S0022-5096(03)00070-X
  18. Massabò R., Brandinelli L., Cox B.N. Mode i weight functions for an orthotropic double cantilever beam // Int. J. Eng. Sci. 2003. V. 41. № 13–14. P. 1497–1518. https://doi.org/10.1016/S0020-7225(03)00029-6
  19. Ustinov K.B. On influence of substrate compliance on delamination and buckling of coatings // Eng. Failure Anal. 2015. V. 47. № 14. P. 338–344. https://doi.org/10.1016/j.engfailanal.2013.09.022
  20. Begley M.R., Hutchinson J.W. The Mechanics and Reliability of Films, Multilayers and Coatings. Cambridge University Press, 2017. https://doi.org/10.1017/9781316443606
  21. Banks-Sills L. Interface Fracture and Delaminations in Composite Materials, Springer Briefs in Applied Sciences and Technology. Cham: Springer, International Publishing, 2018.
  22. Glagolev V.V., Markin A.A. Influence of the model of the behavior of a thin adhesion layer on the value of the j-integral // Mech. Solids. 2022. V. 57. № 2. P. 278–285. https://doi.org/10.3103/S0025654422020169
  23. Glagolev V.V., Markin A.A. Limit States of Adhesive Layers under Combined Loading // Mech. Solids. 2023. V. 58. № 6. P. 1960–1966. https://doi.org/10.3103/S0025654423600204
  24. Kurguzov V.D. Modeling of delamination of thin films under compression // Computational continuum mechanics. 2014. V. 7. № 1. P. 91–99 [In Russian].
  25. Vatulyan A.O., Morozov K.L. Investigation of Delamination from an Elastic Base Using a Model with Two Coefficients of Subgrade Reaction // Mech. Solids. 2020. № 2. P. 207–217. https://doi.org/10.3103/S002565442002017X
  26. Vatulyan A.O., Morozov K.L. Study of the process of delamination of a non-uniform coating // Appl. Mech. Tech. Phys. 2021. V. 62. № 6 (370). P. 138–145 [In Russian].
  27. Popov G.Ya. Bending of a semi-infinite slab lying on a linearly deformable base // PMM. 1961. V. 2. P. 342–355 [In Russian].
  28. Salganik R.L. On brittle fracture of glued bodies // PMM. 1963. V. 27. № 5. P. 957–962 [In Russian].
  29. Fichter W.B. The stress intensity factor for the double cantilever beam // Int. J. Fract. 1983. V. 22. № 2. P. 133–143. https://doi.org/10.1007/BF00942719
  30. Foote R.M.L., Buchwald V.T. An exact solution for the stress intensity factor for a double cantilever beam // Int. J. Fract. 1985. V. 29. № 3. P. 125–134. https://doi.org/10.1007/BF00034313
  31. Zlatin A.N., Khrapkov A.A. A Semi-Infinite Crack Parallel to the Boundary of the Elastic Half-Plane // Sov. Phys. Dokl. 1986. V. 31. P. 1009–1010.
  32. Салганик Р.Л., Устинов К.Б. Задача о деформировании упруго заделанной пластины, моделирующей частично отслоившееся от подложки покрытие (плоская деформация) // Изв. РАН. МТТ. 2012. № 4. С. 50–62. https://doi.org/10.3103/S0025654412040061
  33. Georgiadis H.G., Papadopoulos G.A. Elastostatics of the orthotropic double-cantilever-beam fracture specimen // Z. Angew. Math. Phys. 1990. V. 41. № 6. P. 889–899. https://doi.org/10.1007/BF00945841
  34. Suo Z. Delamination specimens for orthotropic materials // J. Appl. Mech. 1990. V. 57. № 3. P. 627–634. https://doi.org/10.1115/1.2897068
  35. Ustinov K.B., Lisovenko D.S., Chentsov A.V. Orthotropic strip with a central semi-infinite crack under arbitrary normal loads applied far from the crack tip // Bulletin of the Samara State Technical University. Series: Physical and mathematical sciences. 2019. V. 23. № 4. P. 657–670 [ In Russian]. https://doi.org/10.14498/vsgtu1736
  36. Ustinov K.B., Massabò R., Lisovenko D. Orthotropic strip with central semi-infinite crack under arbitrary loads applied far apart from the crack tip. Analytical solution // Eng. Failure Analysis 2020. V. 110. P. 104410. https://doi.org/10.1016/j.engfailanal.2020.104410
  37. Ustinov K.B., Borisova N.L. Splitting of a strip consisting of two identical orthotropic half-strips with isotropy axes symmetrically inclined to the interface // Mech. Solids, submitted. 1990. V. 41. P. 889–899.
  38. Ustinov K.B., Idrisov, D.M. On delamination of bi-layers composed by orthotropic materials: exact analytical solutions for some particular cases // ZAMM. Z. Angew. Math. Mech. 2021. V. 101. № 4. P. e202000239. https://doi.org/10.1002/zamm.202000239
  39. Ustinov K.B., Monetto I., Massabò R. Analytical solutions for an isotropic strip with a central semi-infinite crack: T-stresses, displacements of boundaries, stress intensity factor due to a force acting at the crack // to be published 2024.
  40. Lekhnitsky. Theory of elasticity of an anisotropic elastic body 1963с
  41. Ustinov K. On semi-infinite interface crack in bi-material elastic layer // Eur. J. Mech. A Solids. 2019. V. 75. P. 56–69. https://doi.org/10.1016/j.euromechsol.2019.01.013
  42. Ustinov K., Massabò R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. Sol. Struct. 2022. 248 P. 111600 https://doi.org/10.1016/j.ijsolstr.2022.111600
  43. Noble B. Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations . Physics Today. 1959. 12, 9, 50. https://doi.org/10.1063/1.3060974.
  44. Gakhov F.D. Boundary Value Problems. 1966. Pergamon Press.
  45. Khrapkov A. Winer-Hopf Method in Mixed Elasticity Theory Problems. 2001. B.E. Vedeneev VNIIG Publishing House.
  46. Doetsc G. Anleitung zum praktischen Gebrauch der Laplace-transformations und der Z-transformations, Oldenbourg, München, 1956.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry and system of applied loads

Download (70KB)

Copyright (c) 2024 Russian Academy of Sciences