On the Equilibria of a Heavy Hoop Suspended on a Nail

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the plane problem of the equilibrium of a homogeneous heavy thin elliptical hoop suspended on a thin horizontal nail. Under the assumption that a dry friction force acts between the nail and the hoop, the dependence of the set of equilibrium positions on the friction coefficient and the semi-axes of the ellipse is studied. The results obtained apply to the following problem: to describe the equilibrium positions of a heavy solid (“gun”) suspended on a nail using a rope, both ends of which are fixed in the body. It is shown how such a distribution of results can be carried out directly in the case when the center of mass of the body is located in the middle between the suspension points.

Texto integral

Acesso é fechado

Sobre autores

A. Burov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: jtm@narod.ru
Rússia, Moscow, 119333

V. Nikonov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Email: nikon_v@list.ru
Rússia, Moscow, 119333

Bibliografia

  1. P. Appell, Theoretical Mechanics, Vol. 1: Statics. Dynamics Points (Fizmatlit, Moscow, 1960) [in Russian].
  2. P. Appell, Traité de Mécanique Rationnelle. Tome I (Gauthier-Villars, Paris, 1893).
  3. T. Levi-Civita and U. Amaldi, Theoretical Mechanics Course, Vol. 1, Part. 2 (Inostr. Lit., Moscow, 1952) [in Russian].
  4. T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razionale, Vol. 1, 2nd ed. (Nicola Zanichelli, Bologna, 1923).
  5. A. V. Rodnikov, “The algorithms for capture of the space garbage using “leier constraint,” Reg. Chaot. Dyn. 11 (4), 483–489 (2006). https://doi.org/10.1070/RD2006v011n04ABEH000366
  6. A. V. Rodnikov, “On the leier influence on a dumbbell motion in the central Newtonian force field,” Nelin. Dinam. 5 (4), 519–533 (2009). https://doi.org/10.20537/nd0904005
  7. A. V. Rodnikov, “On a particle motion along the leier fixed in a precessing rigid body,” Nelin. Dinam. 7 (2), 295–311 (2011). https://doi.org/10.20537/nd1102007
  8. A.V. Rodnikov and P. S. Krasil’nikov, “On spacial motions of an orbital tethered system,” Rus. J. Nonlin. Dyn. 2017. V. 13 (4), 505–518 (2017). https://doi.org/10.20537/nd1704004
  9. A. A. Burov, “The existence and stability of the equilibria of mechanical systems with constraints produced by large potential forces,” J. Appl. Math. Mech. 67 (2), 193-200 (2003). https://doi.org/10.1016/S0021-8928(03)90005-0
  10. A. Genda and G. Stepan, “On the stability of bodies suspended asymmetrically with an inelastic rope,” Acta Mech. 234, 3009–3018 (2023). https://doi.org/10.1007/s00707-023-03546-x
  11. J. H. Jellet, A Treatise on the Theory of Friction (MacMillan, London, 1872).
  12. A. P. Ivanov, Fundamentals of the Theory of Systems with Friction (Reg. Khaot. Dyn., Moscow, 2011) [in Russian].
  13. G. M. Rosenblat, Dry Friction and Unilateral Constraints in Solid Mechanics (URSS, Moscow, 2011) [in Russian].
  14. P. S. Aleksandrov, Course of Analytic Geometry and Linear Algebra (Nauka, Moscow, 1979) [in Russian].
  15. S. P. Strelkov, “Froude’s pendulum,” Zh. Tekhn. Fiz. 3, 563–573 (1933).
  16. Z. S. Batalova, V. V. Biryukov, and Y.I. Neimark, “On the motions of the Froude pendulum,” Izv. Vuzov. Mat., No. 3, 3–8 (1977).
  17. K. Magnus, Oscillations: Introduction to Research of Oscillatory Systems (Mir, Moscow, 1982) [in Russian].
  18. V. V. Andronov and V. Ph. Zhuravlev, Dry Friction in Problems of Mechanics (IKI, NITs “Regular and Chaotic Dynamics,” Moscow-Izhevsk, 2010) [in Russian].
  19. J. Awrejcewicz and M. Holicke, “Analytical prediction of chaos in rotated Froude pendulum,” Nonlin. Dyn. 47, 3–24 (2007). https://doi.org/10.1007/s11071-006-9054-8
  20. A. A. Burov, “Task F2642,” Kvant, No. 1, 24 (2021).
  21. A. A. Burov, “Task F2642. Solution,” Kvant, No. 4, 23 (2021).
  22. A. S. Sumbatov, “Conditions for the onset of sliding in a plane system with friction,” J. Appl. Math. Mech. 59 (6), 845–852 (1995). https://doi.org/10.1016/0021-8928(95)00117-4

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. A heavy homogeneous rough hoop in the form of an ellipse with semi-axes a and b, suspended on a nail P

Baixar (21KB)
3. Fig. 2. Partial cases of equilibria at μ = 0

Baixar (38KB)
4. Fig. 3. Families of non-isolated equilibria (grey)

Baixar (47KB)
5. Fig. 4. The dark region on the parameter plane (p, μ) corresponds to the points for the values of which the hoop will be in equilibrium when suspended by any of its points

Baixar (35KB)
6. Fig. 5. The dark area on the parameter plane (q, μ) corresponds to the points for the values of which the shotgun will be in equilibrium when suspended by any strap

Baixar (33KB)
7. Fig. 6. Illustration of a mechanical system: a gun suspended on a belt and positioned in a vertical plane (left). Diagram of forces and coupling reactions (right)

Baixar (91KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024