ПРИНЦИПИАЛЬНЫЕ ПРОБЛЕМЫ РЕЛЯТИВИСТСКОЙ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статья посвящена обсуждению принципиальных проблем, возникающих в релятивистской механике (общей теории относительности) применительно к определению напряжений, порождаемых гравитацией в деформируемом твердом теле. Рассматриваются три такие проблемы. Первая связана с неполнотой системы уравнений Эйнштейна, которая включает шесть взаимно независимых уравнений при десяти неизвестных коэффициентах метрического тензора. Вторая возникает при определении напряжений в твердом теле, порождаемых гравитацией – для статической задачи три уравнения закона сохранения теории (уравнения равновесия) включают шесть неизвестных напряжений, что в отличие от теории Ньютона не позволяет определить гравитационные напряжения. Третья проблема связана с приведением линеаризованных уравнений Эйнштейна к уравнениям гравитационной теории Ньютона. Такое приведение оказывается возможным только для пустого пространства и несправедливо для твердого тела. Отмеченные противоречия удается устранить, ограничивая область применения теории специальным пространством, которое является евклидовым в отношении пространственных координат и римановым только в отношении времени. Обсуждение иллюстрируется сферически симметричной задачей, которая сводится к обыкновенным дифференциальным уравнениям.

Об авторах

В. В. Васильев

Центральный НИИ специального машиностроения

Email: vvvas@dol.ru
Россия, 141371, Хотьково

Л. В. Федоров

НПО Машиностроение

Автор, ответственный за переписку.
Email: vvvas@dol.ru
Россия, 143966, Реутов

Список литературы

  1. Кильчевский Н.А. Основы тензорного исчисления с приложениями к механике. Киев: Наукова думка, 1972. 148 с.
  2. Ландау Л.Д., Лившиц Е.М. Теория поля. М.: Наука, 1988. 509 с.
  3. Вейнберг С. Гравитация и космология. М.: Мир, 1975. 696 с.
  4. Мизнер Ч., Торн К., Уилер Дж. Гравитация. В 3 т. М.: Мир, 1977.
  5. Хокинг С., Эллис Дж. Крупномасштабная структура пространства-времени. М.: Мир, 1977. 431 с.
  6. Фок В.А. Теория пространства, времени и тяготения. М.: ЛКИ, 2007. 563 с.
  7. Choquet-Bruhat Y. Theoreme d’existence pour certains systemes d’equations aux derivees partilles nonlinrares // Acta Math. 1952. V. 88. P. 141–225.
  8. Власов В.З. Уравнения неразрывности деформаций в криволинейных координатах // Избр. Тр. Т. 1. М.: Изд.-во АН СССР, 1962. 558 с.
  9. Vasiliev V.V., Fedorov L.V. Linearized equations of general relativity and the problem of reduction to the Newton theory // J. Mod. Phys. 2020. V. 11. P. 221–236. https://doi.org/10.4236/jmp.2020.112014
  10. Васильев В.В., Федоров Л.В. Задача теории упругости для гравитирующего шара и некоторые геометрические эффекты // Изв. РАН. МТТ. 2003. № 1. С. 84–92.
  11. Vasiliev V.V., Fedorov L.V. To the Schwarzschild solution in general relativity // J. Mod. Phys. 2018. V. 9. № 14. P. 2482–2494. https://doi.org/10.4236/jmp.2018.914160
  12. Рашевский П.К. Риманова геометрия и тензорный анализ. М.: Наука, 1967. 664 с.
  13. Алексеев С.О., Памятных Е.А., Урсулов А.В., Третьякова Д.А., Латош Б.Н. Общая теория относительности. М.: URSS, 2020. 400 с.
  14. Vasiliev V.V., Fedorov L.V. To the complete set of equations for a static problem of general relativity // J. Mod. Phys. 2019. V. 10. № 12. P. 1401–1415. https://doi.org/10.4236/jmp.2019.1012093
  15. Vasiliev V.V. Black holes or dark stars – what follows from the general relativity theory // J. Mod. Phys. 2017. V. 8. № 7. P. 1087–1100. https://doi.org/10.4236/jmp.2017.87070
  16. Vasiliev V.V., Fedorov L.V. To the solution of a spherically symmetric problem of general relativity // J. Mod. Phys. 2023. V. 14. № 2. P. 147–159. https://doi.org/10.4236/jmp.2023.142010
  17. Vasiliev V.V., Fedorov L.V. Spherically symmetric problem of general relativity for an elastic solid sphere // J. Mod. Phys. 2023. V. 14. № 6. P. 818–832. https://doi.org/10.4236/jmp.2023.146047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© В.В. Васильев, Л.В. Федоров, 2023