Formation of coatings from accelerated ions of fluorinated fullerene C60(CF3)12
- 作者: Pukha V.E.1,2, Belmesov A.A.1, Kabachkov E.N.1,3, Nechaev G.V.1, Lukina I.N.4, Drozdova E.I.4, Chernogorova O.P.4
-
隶属关系:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS
- Hydrogen Energy Center, Ltd. (Sistema JFC PJSC)
- Institute of Solid State Physics of the RAS
- Baikov Institute of Metallurgy and Materials Science of the RAS
- 期: 编号 6 (2024)
- 页面: 70-79
- 栏目: Articles
- URL: https://clinpractice.ru/1028-0960/article/view/664811
- DOI: https://doi.org/10.31857/S1028096024060106
- EDN: https://elibrary.ru/DUXGFU
- ID: 664811
如何引用文章
详细
The first results of the deposition of coatings from accelerated ions of fluorinated fullerene C60(CF3)12 are presented. The coatings were formed at room temperature on Si substrates from a beam of singly charged C60(CF3)+12 ions with an energy of 5 keV, as well as from an ion beam, which also contained doubly charged C60(CF3)122+ ions and a certain amount of ionized fragments of molecules. The properties and structure of coatings obtained from accelerated ions of fluorinated fullerene are compared with the properties and structure of coatings obtained from accelerated C60 fullerene ions under the same conditions. According to X-ray photoelectron spectroscopy, fluorinated fullerene coatings contain about 4% fluorine. Investigations of the coatings structure and chemical bonds by X-ray photoelectron spectroscopy and Raman scattering showed that the presence of fluorine leads to decrease in the content of sp3 bonds and the formation of graphite-like sp2 structures. Coating hardness (H) and Young's modulus (E) compared to C60 ion coatings decrease from 36 to 18 GPa and from 245 to 133 GPa, respectively. The H/E ratio remained the same (~0.14). Tribological tests have shown for all coatings a friction coefficient close to 0.1. Also, all coatings are characterized by very low wear, less than 10–7 mm3/N∙m for coatings obtained from C60(CF3)12 ions, the contact angle is ~76°–78°. In the absence of fluorine, for the coating obtained from C60 ions, it is ~90°.
作者简介
V. Pukha
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; Hydrogen Energy Center, Ltd. (Sistema JFC PJSC)
编辑信件的主要联系方式.
Email: pve@icp.ac.ru
俄罗斯联邦, Chernogolovka; Chernogolovka
A. Belmesov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS
Email: pve@icp.ac.ru
俄罗斯联邦, Chernogolovka
E. Kabachkov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; Institute of Solid State Physics of the RAS
Email: pve@icp.ac.ru
俄罗斯联邦, Chernogolovka; Chernogolovka
G. Nechaev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS
Email: pve@icp.ac.ru
俄罗斯联邦, Chernogolovka
I. Lukina
Baikov Institute of Metallurgy and Materials Science of the RAS
Email: pve@icp.ac.ru
俄罗斯联邦, Moscow
E. Drozdova
Baikov Institute of Metallurgy and Materials Science of the RAS
Email: pve@icp.ac.ru
俄罗斯联邦, Moscow
O. Chernogorova
Baikov Institute of Metallurgy and Materials Science of the RAS
Email: pve@icp.ac.ru
俄罗斯联邦, Moscow
参考
- Rajak D.K., Kumar A., Behera A., Menezes, P.L. // Appl. Sci. 2021. V. 11 (10). P. 4445. https://doi.org/10.3390/app11104445
- Schultrich B. Tetrahedrally Bonded Amorphous Carbon Films I: Basics, Structure and Preparation. Springer, 2018. P. 263.
- Bewilogua K., Bräuer G., Dietz A., Gäbler J., Goch G., Karpuschewski B., Szyszka B. // CIRP Annals. 2009. V. 58. Iss. 2. P. 608. https://doi.org/10.1016/j.cirp.2009.09.001
- Narayan R. Diamond-based materials for biomedical applications. Elsevier, 2013.
- Malisz K., Świeczko-Żurek B., Sionkowska A. // Mate-rials. 2023. V. 16 (9). P. 3420. https://doi.org/10.3390/ma16093420
- Santiago J.A., Fernández-Martínez I., Sánchez-Ló-pez J.C., Rojas T.C., Wennberg A., Bellido-González V., Molina-Aldareguia J.M., Monclús M.A., González-Arrabal, R. // Surf. Coat. Technol. 2020. V. 382. P. 124899. https://doi.org/10.1016/j.surfcoat.2019.124899
- Zhang, S., Yan, M., Yang, Y., Zhang, Y., Yan, F., Li, H. // Carbon. 2019. V. 151. P. 136. https://doi.org/10.1016/j.carbon.2019.05.031
- He D., Shang L., Li W., Cheng B., Zhai H., Zhang, X., Lu Z. Zhang G. // Mater. Design. 2023. V. 226. P. 111640. https://doi.org/10.1016/j.matdes.2023.111640
- Belmesov A. A., Nechaev G. V., Pukha V. E., Kabach-kov E. N., Khodos I. I., Karaseov P. A. // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021. V. 15 (Suppl 1), P. 112. https://doi.org/10.1134/S1027451022020240
- Penkov O., Kim H.J., Kim H.J., Kim D.E. // Int. J. Precision Engineer. Manufact. 2014. V. 15. P. 577. https://doi.org/10.1016/j.triboint.2012.11.011
- Pukha V.E., Zubarev E.N., Drozdov A.N., Puga-chov A.T., Jeong S.H., Nam S.C. // J. Phys. D: Appl. Phys. 2012. V. 45 (33). P. 335302. https://doi.org/10.1088/0022-3727/45/33/335302
- Pukha V.E., Karbovskii V.L., Rudchenko S.O., Drozdov A.N., Maleyev M.V., Starikov V.V., Pugachov A.T. // Mater. Res. Exp. 2014. V. 1 (3). P. 035049. https://doi.org/10.1088/2053-1591/1/3/035049
- Pukha V.E., Karbovskii V.L., Drozdov A.N., Pugachov A.T. // J. Phys. D: Appl. Phys. 2013. V. 46 (48). P. 485305. https://doi.org/10.1088/0022-3727/46/48/485305
- Penkov O.V., Pukha V.E., Starikova S.L., Khadem M., Starikov V.V., Maleev M.V., Kim D.E. // Biomaterials. 2016. V. 102. P. 130. https://doi.org/10.1016/j.biomaterials.2016.06.029
- Khadem M., Pukha V.E., Penkov O.V., Khodos I.I., Belmesov A.A., Nechaev G.V., Kabachkov E.N., Karaseov P.A., Kim, D.E. // Surf. Coat. Technol. 2021. V. 424. P. 127670. https://doi.org/10.1016/j.surfcoat.2021.127670
- Lifshitz Y., Kasi S.R., Rabalais J.W., Eckstein W. // Phys. Rev. B. 1990. V. 41 (15). P. 10468. https://doi.org/10.1103/PhysRevB.41.10468
- Popok V.N., Barke I., Campbell E.E., Meiwes-Broer K.H. // Surf. Sci. Rep. 2011. V. 66 (10). P. 347. https://doi.org/10.1016/j.surfrep.2011.05.002
- Troyanov S.I., Dimitrov A., Kemnitz E. // Angewandte Chemie. 2006. V. 118 (12). P. 2005. https://doi.org/10.1002/ange.200503964
- Gruzinskaya N.I., Aleshina V.E., Borshchevskii A.Ya., Troyanov S.I., Sidorov L.N. // Rus. J. Phys. Chem. A. 2007. V. 81. P. 312. https://doi.org/10.1134/S003602440702029X
- Khatymov R.V., Markov V.Y., Tuktarov R.F., Ioffe I.N., Muftakhov M.V., Avdoshenko S.M., Pogulay A.V., Sidorov L.N. // Int. J. Mass Spectrometry. 2008. V. 272. P. 119. https://doi.org/10.1016/j.ijms.2008.01.007
- Wang J., Zhang K., Zhang L., Wang F., Zhang J., Zheng W. // Appl. Surf. Sci. 2018. V. 457. P. 388. https://doi.org/10.1016/j.apsusc.2018.06.249
- Wang J., Ma J., Huang W., Wang L., He H., Liu, C. // Surf. Coat. Technol. 2017. V. 316. P. 22. https://doi.org/10.1016/j.surfcoat.2017.02.065
- Zhang L., Wang F., Qiang L., Gao K., Zhang B., Zhang, J. // RSC Advances, 2015. V. 5(13), P. 9635. https://doi.org/10.1039/C4RA14078H
- Chen X., Wang X., Fang D. // Fullerenes, Nanotubes and Carbon Nanostructures, 2020. V.28 (12), P. 1048. https://doi.org/10.1080/1536383X.2020.1794851
- Lin Y.H., Syue Y.C., Lin H.D., Chen U.S., Chang Y.S., Chen J.R., Shih H.C. // Appl. Surf. Sci. 2008. V. 255. P. 2139. https://doi.org/10.1016/j.apsusc.2008.07.084
- Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. P. 14095. https://doi.org/10.1103/PhysRevB.61.14095
- Ferrari A.C. // Surf. Coat. Technol. 2004. V. 180. P. 190. https://doi.org/10.1016/j.surfcoat.2003.10.146
- Mallet-Ladeira P., Puech P., Toulouse C., Cazayous M., Ratel-Ramond N., Weisbecker P., Vignoles G.L., Monthioux M. // Carbon. 2014. V. 80. P. 629. https://doi.org/10.1016/j.carbon.2014.09.006
- Ostrovskaya L.Y. // J. Nanosci. Nanotechnol. 2009. V. 9. P. 3665. https://doi.org/10.1166/jnn.2009.NS48
- Zhang L., Zong X., Guo F., He B., Yuan X. // Coatings. 2020. V. 10. P. 878. https://doi.org/10.3390/coatings10090878
- Bhattacharyya D., Depci T., Assemi S., Prisbrey K., Miller J.D. // ECS Transactions. 2015. V. 66 (14). P. 45. https://doi.org/10.1149/06614.0045ecst
补充文件
