Oxidation and Etching of Thin Ruthenium Films in Low Ion Energy Oxygen Plasma
- Authors: Amirov I.I.1, Alov N.V.2, Sharanov P.Y.2, Rakhimova T.V.2
-
Affiliations:
- Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
- Lomonosov Moscow State University
- Issue: No 11 (2024)
- Pages: 81-86
- Section: Articles
- URL: https://clinpractice.ru/1028-0960/article/view/681227
- DOI: https://doi.org/10.31857/S1028096024110095
- EDN: https://elibrary.ru/REOQKV
- ID: 681227
Cite item
Abstract
It has been established by X-ray photoelectron spectroscopy that the oxidation of thin ruthenium films in oxygen plasma with the addition of 5% inert gases (Ar or Kr) occurs with the formation of an oxide layer of RuO2. With an increase in ion energy from 20 to 140 eV, the oxygen content in the near-surface layer was found to increase from 60 to 70 at. %. The Ru etching rate also increased several times. Such a symbate dependence is explained by the fact that ion bombardment of the surface stimulates not only the removal of weakly bound metal oxides on the surface, but also accelerates their formation on the surface. The limiting stage of etching is the removal of non-volatile metal oxides. The shift of the Ru3d doublet peaks, the change in their relative intensity depending on the ion energy, as well as the presence of an oxygen-enriched layer on the RuO2 surface indicate the possibility of the formation of RuO3 oxide on the surface during plasma treatment.
Full Text

About the authors
I. I. Amirov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
Author for correspondence.
Email: ildamirov@yandex.ru
Russian Federation, Yaroslavl, 150067
N. V. Alov
Lomonosov Moscow State University
Email: ildamirov@yandex.ru
Russian Federation, Moscow, 119991
P. Yu. Sharanov
Lomonosov Moscow State University
Email: ildamirov@yandex.ru
Russian Federation, Moscow, 119991
T. V. Rakhimova
Lomonosov Moscow State University
Email: ildamirov@yandex.ru
Russian Federation, Moscow, 119991
References
- Kim S.K., Popovici M. // MRS Bull. 2018. V.40. P. 334-338. https://doi.org/10.1557/mrs.2018.95
- Koroleva A.A., Kuzmichev D.S., Kozodaev M.G., Zabrosaev I.V., Korostylev E.V., Markeev A.M. // Appl. Phys. Lett. 2023. V.122. P. 022905. https://doi.org/10.1063/5.0138218
- Kim S.E., Sung J.Y., Jeon J.D., Jang S.Y., Lee H.M., Moon S.M., Kang J.G., Lim H.J., Jung H.-S., Lee S.W. // Adv. Mater. Technol. 2023. V. 8. P. 2200878. https://doi.org/10.1002/admt.202200878
- Chernikova A.G., Lebedinskii Y.Y., Khakimov R.R., Markeev A.M. // Appl. Phys. Lett. 2023. V. 122. P. 021601. https://doi.org/10.1063/5.0132056
- Ezzat S.S., Mani P.D., Khaniya A., Kaden W., Gall D., Barmak K., Coffey K.R. // J. Vac. Sci. Technol. A. 2019. V. 37. P. 031516. https://doi.org/10.1116/1.5093494
- Paolillo S., Wan D., Lazzarino F., Rassoul N., Piumi D., Tőkei Z. // J. Vac. Sci. Technol. B. 2018. V. 36. P. 03E103. https://doi.org/10.1116/1.5022283
- Decoster S., Camerotto E., Murdoch v, Kundu S., Le Q.T., Tőkei Z., Jurczak G., Lazzarino F. // J. Vac. Sci. Technol. B. 2022. V. 40. P. 032802. https://doi.org/10.1116/6.0001791
- Over H. // Chem. Rev. 2012. V.112. P. 3356. https://doi.org/10.1021/cr200247n
- Hrbek J., van Campen D.G., Malik I.J. // J. Vac. Sci. Technol. A. 1995. V. 13. P. 1409. https://doi.org/org/10.1116/1.579573
- Blume R., Niehus H., Conrad H., Böttcher A., Aballe L., Gregoratti L., Barinov A., Kiskinova M. // J. Phys. Chem. 2005. V. 109. P. 14052. https://doi.org/10.1021/jp044175x
- Yunogami T., Nojiri K. // J. Vac. Sci. Technol. B. 2000. V. 18. P. 1911. https://doi.org/ 10.1116/1.1303812
- Hsu C.C., Coburn J.W., Graves D.B. // J. Vac. Sci. Technol. A. 2006. V. 24. P. 1. https://doi.org/10.1116/1.2121751
- Iwasaki Y., Izumi A., Tsurumaki H., Namiki A., Oizumi H., Nishiyama I. // Appl. Surf. Sci. 2007. V. 253. P. 8699. https://doi.org/10.1016/j.apsusc.2007.04.063
- Herd B., Goritzka J.C., Over H. // J. Phys. Chem. C. 2013. V. 117. P. 15148. https://doi.org/10.1021/jp404239y
- Ribera R.C., van de Kruijs R.W.E., Kokke S., Zoethout E., Yakshin A.E., Bijkerk F. // Appl. Phys. Lett. 2014. V. 105. P. 131601. https://doi.org/10.1063/1.4896993
- Herd B., Over H. // Surface Science. 2014. V. 622. P. 24. https://doi.org/10.1016/j.susc.2013.11.017
- Flege J.I., Herd B., Goritzka J., Over H., Krasovskii E.E., Falta J. // ACS Nano. 2015. V. 9. № 8. P. 8468. https://doi.org/10.1021/acsnano.5b03393
- Khaniya A., Ezzat S., Cumston Q., Coffey K.R., Kaden W.E. // Surf. Sci. Spectra. 2020. V. 27. P. 024009. https://doi.org/10.1116/6.0000172
- Diulus J.T., Tobler B., Osterwalder J., Novotny Z. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 244001. https://doi.org/10.1088/1361-6463/abedfd
- Алов Н.В., Лазов М.А., Ищенко А.А. Рентгеновская фотоэлектронная спектроскопия. М.: Изд-во МИТХТ, 2013. 68 с.
- Alov N.V. // Phys. Stat. Sol. C. 2015. V. 12. Р. 263. https://doi.org/10.1002/pssc.201400108
- Amirov I.I., Izyumov M.O., Naumov V.V., Gorlachev E.S. // J. Phys. D. 2021. V. 54. P. 06520. https://doi.org/10.1088/1361-6463/abc3ed
- Voloshin D., Rakhimova T., Kropotkin A., Amirov I., Izyumov M., Lopaev D., Zotovich A., Ziryanov S. // Plasma Sources Sci. Technol. 2023. V. 32. P. 044001. https://doi.org/10.1088/1361-6595/acc355
- Krishna D.N.G., Philip J. // Appl. Surf. Sci. Adv. 2022. V. 12. P. 100332. https://doi.org/10.1016/j.apsadv.2022.100332
- Amirov I.I., Selyukov R.V., Naumov V.V., Gorlachev E.S. // Russ. Microelectronics. 2021. V. 50. P. 1. https://doi.org/10.1134/S106373972101003026
- Kanarik K.J., Tan S., Gottscho R.A. // J. Phys. Chem. Lett. 2018. V. 9. P. 4814. https://doi.org/10.1021/acs.jpclett.8b00997
Supplementary files
