Oxidation and Etching of Thin Ruthenium Films in Low Ion Energy Oxygen Plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been established by X-ray photoelectron spectroscopy that the oxidation of thin ruthenium films in oxygen plasma with the addition of 5% inert gases (Ar or Kr) occurs with the formation of an oxide layer of RuO2. With an increase in ion energy from 20 to 140 eV, the oxygen content in the near-surface layer was found to increase from 60 to 70 at. %. The Ru etching rate also increased several times. Such a symbate dependence is explained by the fact that ion bombardment of the surface stimulates not only the removal of weakly bound metal oxides on the surface, but also accelerates their formation on the surface. The limiting stage of etching is the removal of non-volatile metal oxides. The shift of the Ru3d doublet peaks, the change in their relative intensity depending on the ion energy, as well as the presence of an oxygen-enriched layer on the RuO2 surface indicate the possibility of the formation of RuO3 oxide on the surface during plasma treatment.

Full Text

Restricted Access

About the authors

I. I. Amirov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Author for correspondence.
Email: ildamirov@yandex.ru
Russian Federation, Yaroslavl, 150067

N. V. Alov

Lomonosov Moscow State University

Email: ildamirov@yandex.ru
Russian Federation, Moscow, 119991

P. Yu. Sharanov

Lomonosov Moscow State University

Email: ildamirov@yandex.ru
Russian Federation, Moscow, 119991

T. V. Rakhimova

Lomonosov Moscow State University

Email: ildamirov@yandex.ru
Russian Federation, Moscow, 119991

References

  1. Kim S.K., Popovici M. // MRS Bull. 2018. V.40. P. 334-338. https://doi.org/10.1557/mrs.2018.95
  2. Koroleva A.A., Kuzmichev D.S., Kozodaev M.G., Zabrosaev I.V., Korostylev E.V., Markeev A.M. // Appl. Phys. Lett. 2023. V.122. P. 022905. https://doi.org/10.1063/5.0138218
  3. Kim S.E., Sung J.Y., Jeon J.D., Jang S.Y., Lee H.M., Moon S.M., Kang J.G., Lim H.J., Jung H.-S., Lee S.W. // Adv. Mater. Technol. 2023. V. 8. P. 2200878. https://doi.org/10.1002/admt.202200878
  4. Chernikova A.G., Lebedinskii Y.Y., Khakimov R.R., Markeev A.M. // Appl. Phys. Lett. 2023. V. 122. P. 021601. https://doi.org/10.1063/5.0132056
  5. Ezzat S.S., Mani P.D., Khaniya A., Kaden W., Gall D., Barmak K., Coffey K.R. // J. Vac. Sci. Technol. A. 2019. V. 37. P. 031516. https://doi.org/10.1116/1.5093494
  6. Paolillo S., Wan D., Lazzarino F., Rassoul N., Piumi D., Tőkei Z. // J. Vac. Sci. Technol. B. 2018. V. 36. P. 03E103. https://doi.org/10.1116/1.5022283
  7. Decoster S., Camerotto E., Murdoch v, Kundu S., Le Q.T., Tőkei Z., Jurczak G., Lazzarino F. // J. Vac. Sci. Technol. B. 2022. V. 40. P. 032802. https://doi.org/10.1116/6.0001791
  8. Over H. // Chem. Rev. 2012. V.112. P. 3356. https://doi.org/10.1021/cr200247n
  9. Hrbek J., van Campen D.G., Malik I.J. // J. Vac. Sci. Technol. A. 1995. V. 13. P. 1409. https://doi.org/org/10.1116/1.579573
  10. Blume R., Niehus H., Conrad H., Böttcher A., Aballe L., Gregoratti L., Barinov A., Kiskinova M. // J. Phys. Chem. 2005. V. 109. P. 14052. https://doi.org/10.1021/jp044175x
  11. Yunogami T., Nojiri K. // J. Vac. Sci. Technol. B. 2000. V. 18. P. 1911. https://doi.org/ 10.1116/1.1303812
  12. Hsu C.C., Coburn J.W., Graves D.B. // J. Vac. Sci. Technol. A. 2006. V. 24. P. 1. https://doi.org/10.1116/1.2121751
  13. Iwasaki Y., Izumi A., Tsurumaki H., Namiki A., Oizumi H., Nishiyama I. // Appl. Surf. Sci. 2007. V. 253. P. 8699. https://doi.org/10.1016/j.apsusc.2007.04.063
  14. Herd B., Goritzka J.C., Over H. // J. Phys. Chem. C. 2013. V. 117. P. 15148. https://doi.org/10.1021/jp404239y
  15. Ribera R.C., van de Kruijs R.W.E., Kokke S., Zoethout E., Yakshin A.E., Bijkerk F. // Appl. Phys. Lett. 2014. V. 105. P. 131601. https://doi.org/10.1063/1.4896993
  16. Herd B., Over H. // Surface Science. 2014. V. 622. P. 24. https://doi.org/10.1016/j.susc.2013.11.017
  17. Flege J.I., Herd B., Goritzka J., Over H., Krasovskii E.E., Falta J. // ACS Nano. 2015. V. 9. № 8. P. 8468. https://doi.org/10.1021/acsnano.5b03393
  18. Khaniya A., Ezzat S., Cumston Q., Coffey K.R., Kaden W.E. // Surf. Sci. Spectra. 2020. V. 27. P. 024009. https://doi.org/10.1116/6.0000172
  19. Diulus J.T., Tobler B., Osterwalder J., Novotny Z. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 244001. https://doi.org/10.1088/1361-6463/abedfd
  20. Алов Н.В., Лазов М.А., Ищенко А.А. Рентгеновская фотоэлектронная спектроскопия. М.: Изд-во МИТХТ, 2013. 68 с.
  21. Alov N.V. // Phys. Stat. Sol. C. 2015. V. 12. Р. 263. https://doi.org/10.1002/pssc.201400108
  22. Amirov I.I., Izyumov M.O., Naumov V.V., Gorlachev E.S. // J. Phys. D. 2021. V. 54. P. 06520. https://doi.org/10.1088/1361-6463/abc3ed
  23. Voloshin D., Rakhimova T., Kropotkin A., Amirov I., Izyumov M., Lopaev D., Zotovich A., Ziryanov S. // Plasma Sources Sci. Technol. 2023. V. 32. P. 044001. https://doi.org/10.1088/1361-6595/acc355
  24. Krishna D.N.G., Philip J. // Appl. Surf. Sci. Adv. 2022. V. 12. P. 100332. https://doi.org/10.1016/j.apsadv.2022.100332
  25. Amirov I.I., Selyukov R.V., Naumov V.V., Gorlachev E.S. // Russ. Microelectronics. 2021. V. 50. P. 1. https://doi.org/10.1134/S106373972101003026
  26. Kanarik K.J., Tan S., Gottscho R.A. // J. Phys. Chem. Lett. 2018. V. 9. P. 4814. https://doi.org/10.1021/acs.jpclett.8b00997

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. XRD spectra of Ru3d levels on the surface of the initial film with natural ruthenium oxide layer (1) and after its purification by argon ion beam bombardment (2).

Download (123KB)
3. Fig. 2. XRD spectra of Ru3d level of pure Ru surface (1) and after exposure to O2 + 5% Kr plasma at ion energy ~40 eV for 360 s (2).

Download (120KB)
4. Fig. 3. XRD spectra of Ru3d levels of Ru film surface treated in O2 + 5% Kr plasma at 20 eV energy for 120 (1) and 480 s (2).

Download (116KB)
5. Fig. 4. XRD spectra of Ru3d levels of the Ru film surface treated in O2 + 5% Kr plasma for 240 c at energies of 150 (1), 100 (2) and 60 eV (3).

Download (145KB)
6. Fig. 5. Dependence of oxygen content in the film (1) and Ru etching rate in O2 + 5% Ar (2) and O2 + 5% Kr (3) plasma on the energy of bombarding ions.

Download (110KB)
7. Fig. 6. SEM image of Ru film surface after etching in O2 + 5% Kr plasma at Ucm = 130 eV for 240 s (a) and 30 eV for 360 s (b).

Download (910KB)

Copyright (c) 2024 Russian Academy of Sciences