Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders
- Authors: Singh S.1, Ahuja A.2, Pathak S.3
-
Affiliations:
- Institute of Pharmaceutical Research,, GLA University Mathura
- Institute of Pharmaceutical Research, GLA University Mathura
- Institute of Pharmaceutical ResearchPharmacy, GLA University Mathura,
- Issue: Vol 27, No 14 (2024)
- Pages: 2043-2061
- Section: Chemistry
- URL: https://clinpractice.ru/1386-2073/article/view/644119
- DOI: https://doi.org/10.2174/0113862073280680240101065732
- ID: 644119
Cite item
Full Text
Abstract
Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.
About the authors
Sonia Singh
Institute of Pharmaceutical Research,, GLA University Mathura
Author for correspondence.
Email: info@benthamscience.net
Ashima Ahuja
Institute of Pharmaceutical Research, GLA University Mathura
Email: info@benthamscience.net
Shilpi Pathak
Institute of Pharmaceutical ResearchPharmacy, GLA University Mathura,
Email: info@benthamscience.net
References
- Chiurchiù, V.; Orlacchio, A.; Maccarrone, M. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxidat. Med. Cell. Long., 2016, 2016, 7909380. doi: 10.1155/2016/7909380
- Zheng, M.; Storz, G. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol., 2000, 59(1), 1-6. doi: 10.1016/S0006-2952(99)00289-0 PMID: 10605928
- Aikens, J.; Dix, T.A. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem., 1991, 266(23), 15091-15098. doi: 10.1016/S0021-9258(18)98591-1 PMID: 1869544
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95. doi: 10.1152/physrev.00018.2001 PMID: 11773609
- Chiurchiù, V.; Maccarrone, M. Chronic inflammatory disorders and their redox control: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2011, 15(9), 2605-2641. doi: 10.1089/ars.2010.3547 PMID: 21391902
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322. doi: 10.1104/pp.106.077073 PMID: 16760481
- Poulsen, H.E.; Prieme, H.; Loft, S. Role of oxidative DNA damage in cancer initiation and promotion. Eur. J. Cancer Prev., 1998, 7(1), 9-16. PMID: 9511847
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18(10), 872-879. doi: 10.1016/S0899-9007(02)00916-4 PMID: 12361782
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583. doi: 10.3390/molecules24081583 PMID: 31013638
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795. doi: 10.1038/nature05292 PMID: 17051205
- Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxidat. Med. Cell. Longev., 2012, 2012, 428010. doi: 10.1155/2012/428010
- de Rijk, M.C.; Launer, L.J.; Berger, K.; Breteler, M.M.; Dartigues, J.F.; Baldereschi, M.; Fratiglioni, L.; Lobo, A.; Martinez-Lage, J.; Trenkwalder, C.; Hofman, A. Prevalence of Parkinsons disease in Europe: A collaborative study of population-based cohorts. Neurology, 2000, 54(11), S21-S23. PMID: 10854357
- Bekris, L.M.; Mata, I.F.; Zabetian, C.P. The genetics of Parkinson disease. J. Geriatr. Psychiatry Neurol., 2010, 23(4), 228-242. doi: 10.1177/0891988710383572 PMID: 20938043
- Farrer, M.J. Genetics of Parkinson disease: Paradigm shifts and future prospects. Nat. Rev. Genet., 2006, 7(4), 306-318. doi: 10.1038/nrg1831 PMID: 16543934
- Alzheimers Association. 2011 Alzheimers disease facts and figures. Alzheimers Dement., 2011, 7(2), 208-244. doi: 10.1016/j.jalz.2011.02.004 PMID: 21414557
- Song, P.; Zou, M.H. Roles of reactive oxygen species in physiology and pathology. In: Atherosclerosis: Risks, Mechanisms, and Therapies; Wiley, 2015. doi: 10.1002/9781118828533.ch30
- Federico, A.; Cardaioli, E.; Da Pozzo, P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci., 2012, 322(1-2), 254-262. doi: 10.1016/j.jns.2012.05.030 PMID: 22669122
- Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: Stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(s2), S357-S367. doi: 10.3233/JAD-2010-100498 PMID: 20421690
- Perneczky, R. Dementia prevention and reserve against neurodegenerative disease. Dialogues Clin. Neurosci., 2019, 21(1), 53-60. PMID: 31607780
- Banerjee, S.; McCracken, S.; Hossain, M.F.; Slaughter, G. Electrochemical detection of neurotransmitters. Biosensors, 2020, 10(8), 101. doi: 10.3390/bios10080101 PMID: 32824869
- Arumugasamy, S.K.; Chellasamy, G.; Gopi, S.; Govindaraju, S.; Yun, K. Current advances in the detection of neurotransmitters by nanomaterials: An update. Trends Analyt. Chem., 2020, 123, 115766. doi: 10.1016/j.trac.2019.115766
- Niyonambaza, S.D.; Kumar, P.; Xing, P.; Mathault, J.; De Koninck, P.; Boisselier, E.; Boukadoum, M.; Miled, A. A review of neurotransmitters sensing methods for neuro-engineering research. Appl. Sci. , 2019, 9(21), 4719. doi: 10.3390/app9214719
- Xia, X.; Wang, Y.; Qin, Y.; Zhao, S.; Zheng, J.C. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res. Rev., 2022, 74, 101558. doi: 10.1016/j.arr.2021.101558 PMID: 34990846
- Tiedje, K.E. Stevens, K.; Barnes, S.; Weaver, D.F. β-Alanine as a small molecule neurotransmitter. Neurochem. Int., 2010, 57(3), 177-188. doi: 10.1016/j.neuint.2010.06.001 PMID: 20540981
- Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; Busnatu, Ș.; Munteanu, C. Cellular and molecular targets for non-invasive, non-pharmacological therapeutic/rehabilitative interventions in acute ischemic stroke. Int. J. Mol. Sci., 2022, 23(2), 907. doi: 10.3390/ijms23020907 PMID: 35055089
- Tam, K.Y.; Ju, Y. Pathological mechanisms and therapeutic strategies for Alzheimers disease. Neural Regen. Res., 2022, 17(3), 543-549. doi: 10.4103/1673-5374.320970 PMID: 34380884
- Satarker, S.; Bojja, S.L.; Gurram, P.C.; Mudgal, J.; Arora, D.; Nampoothiri, M. Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells, 2022, 11(7), 1139. doi: 10.3390/cells11071139 PMID: 35406702
- Murley, A.G.; Rowe, J.B. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain, 2018, 141(5), 1263-1285. doi: 10.1093/brain/awx327 PMID: 29373632
- Le Gall, L.; Anakor, E.; Connolly, O.; Vijayakumar, U.; Duddy, W.; Duguez, S. Molecular and cellular mechanisms affected in ALS. J. Pers. Med., 2020, 10(3), 101. doi: 10.3390/jpm10030101 PMID: 32854276
- Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinsons disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164. doi: 10.1016/j.jphs.2020.07.011 PMID: 32807662
- Moraes, B.J.; Coelho, P.; Fão, L.; Ferreira, I.L.; Rego, A.C. Modified glutamatergic postsynapse in neurodegenerative disorders. Neuroscience, 2021, 454, 116-139. doi: 10.1016/j.neuroscience.2019.12.002 PMID: 31887357
- Kazama, M.; Kato, Y.; Kakita, A.; Noguchi, N.; Urano, Y.; Masui, K.; Niida-Kawaguchi, M.; Yamamoto, T.; Watabe, K.; Kitagawa, K.; Shibata, N. Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology, 2020, 40(6), 587-598. doi: 10.1111/neup.12716 PMID: 33305472
- Qu, Y.; Shi, J.; Tang, Y.; Zhao, F.; Li, S.; Meng, J.; Tang, J.; Lin, X.; Peng, X.; Mu, D. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp. Neurol., 2016, 279, 223-231. doi: 10.1016/j.expneurol.2016.03.011 PMID: 26980487
- Gao, F.; Yin, X.; Edden, R.A.E.; Evans, A.C.; Xu, J.; Cao, G.; Li, H.; Li, M.; Zhao, B.; Wang, J.; Wang, G. Altered hippocampal GABA and glutamate levels and uncoupling from functional connectivity in multiple sclerosis. Hippocampus, 2018, 28(11), 813-823. doi: 10.1002/hipo.23001 PMID: 30069963
- Bukke, V.N.; Archana, M.; Villani, R.; Romano, A.D.; Wawrzyniak, A.; Balawender, K.; Orkisz, S.; Beggiato, S.; Serviddio, G.; Cassano, T. The dual role of glutamatergic neurotransmission in Alzheimers disease: From pathophysiology to pharmacotherapy. Int. J. Mol. Sci., 2020, 21(20), 7452. doi: 10.3390/ijms21207452 PMID: 33050345
- Madeira, C.; Vargas-Lopes, C.; Brandão, C.O.; Reis, T.; Laks, J.; Panizzutti, R.; Ferreira, S.T. Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimers disease and depression. Front. Psychiatry, 2018, 9, 561. doi: 10.3389/fpsyt.2018.00561 PMID: 30459657
- Zhang, Z.; Zhang, S.; Fu, P.; Zhang, Z.; Lin, K.; Ko, J.K.S.; Yung, K.K.L. Roles of glutamate receptors in Parkinsons disease. Int. J. Mol. Sci., 2019, 20(18), 4391. doi: 10.3390/ijms20184391 PMID: 31500132
- Tsuang, D.W.; Greenwood, T.A.; Jayadev, S.; Davis, M.; Shutes-David, A.; Bird, T.D. A genetic study of psychosis in Huntingtons disease: Evidence for the involvement of glutamate signaling pathways. J. Huntingtons Dis., 2018, 7(1), 51-59. doi: 10.3233/JHD-170277 PMID: 29480208
- Alcoreza, O.B.; Patel, D.C.; Tewari, B.P.; Sontheimer, H. Dysregulation of ambient glutamate and glutamate receptors in epilepsy: An astrocytic perspective. Front. Neurol., 2021, 12, 652159. doi: 10.3389/fneur.2021.652159 PMID: 33828523
- Koshal, P.; Jamwal, S.; Kumar, P. Glucagon-like Peptide-1 (GLP- 1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology, 2018, 136(Pt B), 271-279. doi: 10.1016/j.neuropharm.2017.11.015 PMID: 29129776
- Ochoa-de la Paz, L.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H. Taurine and GABA neurotransmitter receptors, a relationship with therapeutic potential? Expert Rev. Neurother., 2019, 19(4), 289-291. doi: 10.1080/14737175.2019.1593827 PMID: 30892104
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 2019, 102(1), 75-90. doi: 10.1016/j.neuron.2019.03.013 PMID: 30946828
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693(Pt B), 128-133. doi: 10.1016/j.brainres.2018.03.015 PMID: 29903615
- Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci., 2022, 23(11), 5954. doi: 10.3390/ijms23115954 PMID: 35682631
- Kölker, S. Metabolism of amino acid neurotransmitters: The synaptic disorder underlying inherited metabolic diseases. J. Inherit. Metab. Dis., 2018, 41(6), 1055-1063. doi: 10.1007/s10545-018-0201-4 PMID: 29869166
- Juliá-Palacios, N.; Molina-Anguita, C.; Sigatulina Bondarenko, M.; Cortès-Saladelafont, E.; Aparicio, J.; Cuadras, D.; Horvath, G.; Fons, C.; Artuch, R.; García-Cazorla, À. Monoamine neurotransmitters in early epileptic encephalopathies: New insights into pathophysiology and therapy. Dev. Med. Child Neurol., 2022, 64(7), 915-923. doi: 10.1111/dmcn.15140 PMID: 35833444
- Franco, R.; Reyes-Resina, I.; Navarro, G. Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines, 2021, 9(2), 109. doi: 10.3390/biomedicines9020109 PMID: 33499192
- Swamy, B.K.; Shiprath, K.; Rakesh, G.; Ratnam, K.V.; Manjunatha, H.; Janardan, S.; Naidu, K.C.; Ramesh, S.; Suresh, K.; Ratnamala, A. Simultaneous detection of dopamine, tyrosine and ascorbic acid using NiO/graphene modified graphite electrode. Biointerface Res. Appl. Chem., 2020, 10(3), 5599-5609. doi: 10.33263/BRIAC103.599609
- Swamy, B.K.; Shiprath, K.; Ratnam, K.V.; Manjunatha, H.; Janardan, S.; Ratnamala, A.; Naidu, K.C.; Ramesh, S.; Babu, K.S. Electrochemical detection of dopamine and tyrosine using metal oxide (MO, M= Cu and Ni) modified graphite electrode: A comparative study. Biointerface Res. Appl. Chem., 2020, 10(5), 6460-6473. doi: 10.33263/BRIAC105.64606473
- Burnstock, G. Chemical names. Trends Pharmacol. Sci., 2006, 3(27), 166-176. doi: 10.1016/j.tips.2006.01.005 PMID: 16487603
- Nowaczyk, A.; Kowalska, M.; Nowaczyk, J. Grześk, G. Carbon monoxide and nitric oxide as examples of the youngest class of transmitters. Int. J. Mol. Sci., 2021, 22(11), 6029. doi: 10.3390/ijms22116029 PMID: 34199647
- Folasire, O.; Mills, K.A.; Sellers, D.J.; Chess-Williams, R. Three gaseous neurotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide, are involved in the neurogenic relaxation responses of the porcine internal anal sphincter. J. Neurogastroenterol. Motil., 2015, 22(1), 141-148. doi: 10.5056/jnm15036 PMID: 26486177
- You, Y.; Ikezu, T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol. Dis., 2019, 130, 104512. doi: 10.1016/j.nbd.2019.104512 PMID: 31229685
- Verweij, F.J.; Bebelman, M.P.; Jimenez, C.R.; Garcia-Vallejo, J.J.; Janssen, H.; Neefjes, J.; Knol, J.C.; de Goeij-de Haas, R.; Piersma, S.R.; Baglio, S.R.; Verhage, M.; Middeldorp, J.M.; Zomer, A.; van Rheenen, J.; Coppolino, M.G.; Hurbain, I.; Raposo, G.; Smit, M.J.; Toonen, R.F.G.; van Niel, G.; Pegtel, D.M. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol., 2018, 217(3), 1129-1142. doi: 10.1083/jcb.201703206 PMID: 29339438
- Saeedi, S.; Israel, S.; Nagy, C.; Turecki, G. The emerging role of exosomes in mental disorders. Transl. Psychiatry, 2019, 9(1), 122. doi: 10.1038/s41398-019-0459-9 PMID: 30923321
- Shi, M.; Liu, C.; Cook, T.J.; Bullock, K.M.; Zhao, Y.; Ginghina, C.; Li, Y.; Aro, P.; Dator, R.; He, C.; Hipp, M.J.; Zabetian, C.P.; Peskind, E.R.; Hu, S.C.; Quinn, J.F.; Galasko, D.R.; Banks, W.A.; Zhang, J. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinsons disease. Acta Neuropathol., 2014, 128(5), 639-650. doi: 10.1007/s00401-014-1314-y PMID: 24997849
- Rudolph, L.M.; Cornil, C.A.; Mittelman-Smith, M.A.; Rainville, J.R.; Remage-Healey, L.; Sinchak, K.; Micevych, P.E. Actions of steroids: New neurotransmitters. J. Neurosci., 2016, 36(45), 11449-11458. doi: 10.1523/JNEUROSCI.2473-16.2016 PMID: 27911748
- DAniello, S.; Somorjai, I.; Garcia-Fernàndez, J.; Topo, E.; DAniello, A. D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J., 2011, 25(3), 1014-1027. doi: 10.1096/fj.10-168492 PMID: 21163862
- Relja, M. Pathophysiology and classification of neurodegenerative diseases. EJIFCC, 2004, 15(3), 97-99. PMID: 29988912
- Bennett, D.A.; Beckett, L.A.; Murray, A.M.; Shannon, K.M.; Goetz, C.G.; Pilgrim, D.M.; Evans, D.A. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N. Engl. J. Med., 1996, 334(2), 71-76. doi: 10.1056/NEJM199601113340202 PMID: 8531961
- Norris, F.; Shepherd, R.; Denys, E.; U, K.; Mukai, E.; Elias, L.; Holden, D.; Norris, H. Onset, natural history and outcome in idiopathic adult motor neuron disease. J. Neurol. Sci., 1993, 118(1), 48-55. doi: 10.1016/0022-510X(93)90245-T PMID: 8229050
- Margolis, R.L.; McInnis, M.G.; Rosenblatt, A.; Ross, C.A. Trinucleotide repeat expansion and neuropsychiatric disease. Arch. Gen. Psychiatry, 1999, 56(11), 1019-1031. doi: 10.1001/archpsyc.56.11.1019 PMID: 10565502
- Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(6), 4094-4125. doi: 10.1007/s12035-015-9337-5 PMID: 26198567
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385. PMID: 25774178
- Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12. doi: 10.3389/fnagi.2010.00012 PMID: 20552050
- Dauer, W.; Przedborski, S. Parkinsons disease. Neuron, 2003, 39(6), 889-909. doi: 10.1016/S0896-6273(03)00568-3 PMID: 12971891
- Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2001, 344(22), 1688-1700. doi: 10.1056/NEJM200105313442207 PMID: 11386269
- Dinkova-Kostova, A.T.; Talalay, P.; Sharkey, J.; Zhang, Y.; Holtzclaw, W.D.; Wang, X.J.; David, E.; Schiavoni, K.H.; Finlayson, S.; Mierke, D.F.; Honda, T. An exceptionally potent inducer of cytoprotective enzymes: Elucidation of the structural features that determine inducer potency and reactivity with Keap1. J. Biol. Chem., 2010, 285(44), 33747-33755. doi: 10.1074/jbc.M110.163485 PMID: 20801881
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
- Bertram, L.; Tanzi, R.E. Thirty years of Alzheimers disease genetics: The implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778. doi: 10.1038/nrn2494 PMID: 18802446
- Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 2000, 71(2), 621S-629S. doi: 10.1093/ajcn/71.2.621s PMID: 10681270
- Querfurth, H.W.; LaFerla, F.M. Alzheimers disease. N. Engl. J. Med., 2010, 362(4), 329-344. doi: 10.1056/NEJMra0909142 PMID: 20107219
- Praticò, D. Oxidative stress hypothesis in Alzheimers disease: A reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615. doi: 10.1016/j.tips.2008.09.001 PMID: 18838179
- Montine, K.S.; Reich, E.; Neely, M.D.; Sidell, K.R.; Olson, S.J.; Markesbery, W.R.; Montine, T.J. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J. Neuropathol. Exp. Neurol., 1998, 57(5), 415-425. doi: 10.1097/00005072-199805000-00005 PMID: 9596412
- Ahmed, N.; Ahmed, U.; Thornalley, P.J.; Hager, K.; Fleischer, G.; Münch, G. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimers disease and link to cognitive impairment. J. Neurochem., 2005, 92(2), 255-263. doi: 10.1111/j.1471-4159.2004.02864.x PMID: 15663474
- Choi, J.; Rees, H.D.; Weintraub, S.T.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J. Biol. Chem., 2005, 280(12), 11648-11655. doi: 10.1074/jbc.M414327200 PMID: 15659387
- Wong, A.; Lüth, H.J.; Deuther-Conrad, W.; Dukic-Stefanovic, S.; Gasic-Milenkovic, J.; Arendt, T.; Münch, G. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimers disease. Brain Res., 2001, 920(1-2), 32-40. doi: 10.1016/S0006-8993(01)02872-4 PMID: 11716809
- Poppek, D.; Keck, S.; Ermak, G.; Jung, T.; Stolzing, A.; Ullrich, O.; Davies, K.J.A.; Grune, T. Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem. J., 2006, 400(3), 511-520. doi: 10.1042/BJ20060463 PMID: 16939415
- Keck, S.; Nitsch, R.; Grune, T.; Ullrich, O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimers disease. J. Neurochem., 2003, 85(1), 115-122. doi: 10.1046/j.1471-4159.2003.01642.x PMID: 12641733
- Bonda, D.J.; Lee, H.; Blair, J.A.; Zhu, X.; Perry, G.; Smith, M.A. Role of metal dyshomeostasis in Alzheimers disease. Metallomics, 2011, 3(3), 267-270. doi: 10.1039/c0mt00074d PMID: 21298161
- Zhang, L.; Zhao, B.; Yew, D.T.; Kusiak, J.W.; Roth, G.S. Processing of Alzheimers amyloid precursor protein during H2O2-induced apoptosis in human neuronal cells. Biochem. Biophys. Res. Commun., 1997, 235(3), 845-848. doi: 10.1006/bbrc.1997.6698 PMID: 9207249
- Atwood, C.S.; Moir, R.D.; Huang, X.; Scarpa, R.C.; Bacarra, N.M.E.; Romano, D.M.; Hartshorn, M.A.; Tanzi, R.E.; Bush, A.I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem., 1998, 273(21), 12817-12826. doi: 10.1074/jbc.273.21.12817 PMID: 9582309
- Atwood, C.S.; Scarpa, R.C.; Huang, X.; Moir, R.D.; Jones, W.D.; Fairlie, D.P.; Tanzi, R.E.; Bush, A.I. Characterization of copper interactions with alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1-42. J. Neurochem., 2000, 75(3), 1219-1233. doi: 10.1046/j.1471-4159.2000.0751219.x PMID: 10936205
- Atwood, C.S.; Obrenovich, M.E.; Liu, T.; Chan, H.; Perry, G.; Smith, M.A.; Martins, R.N. Amyloid-β a chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Res. Brain Res. Rev., 2003, 43(1), 1-16. doi: 10.1016/S0165-0173(03)00174-7 PMID: 14499458
- Cherny, R.A.; Barnham, K.J.; Lynch, T.; Volitakis, I.; Li, Q.X.; McLean, C.A.; Multhaup, G.; Beyreuther, K.; Tanzi, R.E.; Masters, C.L.; Bush, A.I. Chelation and intercalation: Complementary properties in a compound for the treatment of Alzheimers disease. J. Struct. Biol., 2000, 130(2-3), 209-216. doi: 10.1006/jsbi.2000.4285 PMID: 10940226
- González, H.; Pacheco, R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J. Neuroinflammation, 2014, 11(1), 201. doi: 10.1186/s12974-014-0201-8 PMID: 25441979
- Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinsons disease. J. Parkinsons Dis., 2013, 3(4), 461-491. doi: 10.3233/JPD-130230 PMID: 24252804
- Puspita, L.; Chung, S.Y.; Shim, J. Oxidative stress and cellular pathologies in Parkinsons disease. Mol. Brain, 2017, 10(1), 53. doi: 10.1186/s13041-017-0340-9 PMID: 29183391
- Zeevalk, G.D.; Razmpour, R.; Bernard, L.P. Glutathione and Parkinsons disease: Is this the elephant in the room? Biomed. Pharmacother., 2008, 62(4), 236-249. doi: 10.1016/j.biopha.2008.01.017 PMID: 18400456
- Torres-Vega, A.; Pliego-Rivero, B.F.; Otero-Ojeda, G.A.; Gómez-Oliván, L.M.; Vieyra-Reyes, P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr. Rev., 2012, 70(12), 679-692. doi: 10.1111/j.1753-4887.2012.00521.x PMID: 23206282
- Tieu, K.; Ischiropoulos, H.; Przedborski, S. Nitric oxide and reactive oxygen species in Parkinsons disease. IUBMB Life, 2003, 55(6), 329-335. doi: 10.1080/1521654032000114320 PMID: 12938735
- Hunot, S.; Boissière, F.; Faucheux, B.; Brugg, B.; Mouatt-Prigent, A.; Agid, Y.; Hirsch, E.C. Nitric oxide synthase and neuronal vulnerability in parkinsons disease. Neuroscience, 1996, 72(2), 355-363. doi: 10.1016/0306-4522(95)00578-1 PMID: 8737406
- Eve, D.J.; Nisbet, A.P.; Kingsbury, A.E.; Hewson, E.L.; Daniel, S.E.; Lees, A.J.; Marsden, C.D.; Foster, O.J.F. Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinsons disease. Brain Res. Mol. Brain Res., 1998, 63(1), 62-71. doi: 10.1016/S0169-328X(98)00259-9 PMID: 9838046
- Kikuchi, S.; Shinpo, K.; Ogata, A.; Tsuji, S.; Takeuchi, M.; Makita, Z.; Tashiro, K. Detection of N epsilon-(carboxymethyl) lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotrophic lateral sclerosis and other motor neuron disorders: Official publication of the World Federation of Neurology. Res. Group Motor Neuron Dis., 2002, 3(2), 63-68.
- Mendez, E.F.; Sattler, R. Biomarker development for C9orf72 repeat expansion in ALS. Brain Res., 2015, 1607, 26-35. doi: 10.1016/j.brainres.2014.09.041 PMID: 25261695
- Lacomblez, L.; Bensimon, G.; Meininger, V.; Leigh, P.N.; Guillet, P. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet, 1996, 347(9013), 1425-1431. doi: 10.1016/S0140-6736(96)91680-3 PMID: 8676624
- Yoshino, H.; Kimura, A. Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study). Amyotroph. Lateral Scler., 2006, 7(4), 247-251. doi: 10.1080/17482960600881870 PMID: 17127563
- Louwerse, E.S.; Weverling, G.J.; Bossuyt, P.M.M.; Meyjes, F.E.P.; de Jong, J.M.B.V. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch. Neurol., 1995, 52(6), 559-564. doi: 10.1001/archneur.1995.00540300031009 PMID: 7763202
- Vonsattel, J.P.; DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol., 1998, 57(5), 369-384. doi: 10.1097/00005072-199805000-00001 PMID: 9596408
- Li, S.H.; Li, X.J. Huntingtin and its role in neuronal degeneration. Neuroscientist, 2004, 10(5), 467-475. doi: 10.1177/1073858404266777 PMID: 15359012
- Stack, E.C.; Matson, W.R.; Ferrante, R.J. Evidence of oxidant damage in Huntingtons disease: Translational strategies using antioxidants. Ann. N. Y. Acad. Sci., 2008, 1147(1), 79-92. doi: 10.1196/annals.1427.008 PMID: 19076433
- Túnez, I.; Sánchez-López, F.; Agüera, E.; Fernández-Bolaños, R.; Sánchez, F.M.; Tasset-Cuevas, I. Important role of oxidative stress biomarkers in Huntingtons disease. J. Med. Chem., 2011, 54(15), 5602-5606. doi: 10.1021/jm200605a PMID: 21678912
- Johri, A.; Beal, M.F. Antioxidants in huntingtons disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 664-674. doi: 10.1016/j.bbadis.2011.11.014
- Kumar, A.; Ratan, R.R. Oxidative stress and Huntingtons disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237. doi: 10.3233/JHD-160205 PMID: 27662334
- Khan, F.; Kumar Garg, V.; Kumar Singh, A.; Tinku, T. Role of free radicals and certain antioxidants in the management of huntingtons disease: A review. J. Anal. Pharm. Res., 2018, 7(4), 386-392. doi: 10.15406/japlr.2018.07.00256
- Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A mitochondria-associated oxidative stress perspective on Huntingtons disease. Front. Mol. Neurosci., 2018, 11, 329. doi: 10.3389/fnmol.2018.00329 PMID: 30283298
- Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842. doi: 10.1021/bi9020378 PMID: 20050630
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev., 2002, 23(5), 599-622. doi: 10.1210/er.2001-0039 PMID: 12372842
- Liochev, S.I.; Fridovich, I. The role of O2.- in the production of HO.: In vitro and in vivo . Free Radic. Biol. Med., 1994, 16(1), 29-33. doi: 10.1016/0891-5849(94)90239-9 PMID: 8299992
- Castro, L.; Tórtora, V.; Mansilla, S.; Radi, R. Aconitases: Non-redox iron-sulfur proteins sensitive to reactive species. Acc. Chem. Res., 2019, 52(9), 2609-2619. doi: 10.1021/acs.accounts.9b00150 PMID: 31287291
- Zhang, H.; Forman, H.J. 4-hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med., 2017, 111, 219-225. doi: 10.1016/j.freeradbiomed.2016.11.032 PMID: 27876535
- Haque, R.; Uddin, S.N.; Hossain, A. Amyloid Beta (Aβ) and oxidative stress: Progression of alzheimers disease. Adv. Biotechnol. Microbiol., 2018, 11(1), 555802. doi: 10.19080/AIBM.2018.11.555802
- Galluzzi, S.; Zanardini, R.; Ferrari, C.; Gipponi, S.; Passeggia, I.; Rampini, M.; Sgrò, G.; Genovese, S.; Fiorito, S.; Palumbo, L.; Pievani, M.; Frisoni, G.B.; Epifano, F. Cognitive and biological effects of citrus phytochemicals in subjective cognitive decline: A 36-week, randomized, placebo-controlled trial. Nutr. J., 2022, 21(1), 64. doi: 10.1186/s12937-022-00817-6 PMID: 36253765
- Mendoza, BM.; Ortiz, GG.; Romero, LS.; Lara, DL.; Martínez, MT.; Ramírez, MA.; Serrano, JA.; Pacheco-Moisés, FP. Dietary fish oil increases catalase activity in patients with probable Alzheimers disease. Nutr. Hosp., 2022, 39(6), 1364-1368.
- Clark, D.O.; Xu, H.; Moser, L.; Adeoye, P.; Lin, A.W.; Tangney, C.C.; Risacher, S.L.; Saykin, A.J.; Considine, R.V.; Unverzagt, F.W. MIND food and speed of processing training in older adults with low education, the MINDSpeed Alzheimers disease prevention pilot trial. Contemp. Clin. Trials, 2019, 84, 105814. doi: 10.1016/j.cct.2019.105814 PMID: 31326523
- Sala-Vila, A.; Valls-Pedret, C.; Rajaram, S.; Coll-Padrós, N.; Cofán, M.; Serra-Mir, M.; Pérez-Heras, A.M.; Roth, I.; Freitas-Simoes, T.M.; Doménech, M.; Calvo, C.; López-Illamola, A.; Bitok, E.; Buxton, N.K.; Huey, L.; Arechiga, A.; Oda, K.; Lee, G.J.; Corella, D.; Vaqué-Alcázar, L.; Sala-Llonch, R.; Bartrés-Faz, D.; Sabaté, J.; Ros, E. Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts And Healthy Aging (WAHA) study: A randomized controlled trial. Am. J. Clin. Nutr., 2020, 111(3), 590-600. doi: 10.1093/ajcn/nqz328 PMID: 31912155
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra e Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; Vasquez, E.C. Oxidative stress and dementia in Alzheimers patients: Effects of synbiotic supplementation. Oxid. Med. Cell. Longev., 2020, 2020, 1-14. doi: 10.1155/2020/2638703 PMID: 32411323
- Tamtaji, O.R.; Heidari-soureshjani, R.; Asemi, Z.; Kouchaki, E. The effects of spirulina intake on clinical and metabolic parameters in Alzheimers disease: A randomized, double-blind, controlled trial. Phytother. Res., 2023, 37(7), 2957-2964. doi: 10.1002/ptr.7791 PMID: 36861852
- Foroumandi, E.; Javan, R.; Moayed, L.; Fahimi, H.; Kheirabadi, F.; Neamatshahi, M.; Shogofteh, F.; Zarghi, A. The effects of fenugreek seed extract supplementation in patients with Alzheimers disease: A randomized, double-blind, placebo-controlled trial. Phytother. Res., 2023, 37(1), 285-294. doi: 10.1002/ptr.7612 PMID: 36199177
- Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimers disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575. doi: 10.1016/j.clnu.2018.11.034 PMID: 30642737
- Yang, T.; Wang, H.; Xiong, Y.; Chen, C.; Duan, K.; Jia, J.; Ma, F. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: A 12-month randomized controlled trial. J. Alzheimers Dis., 2020, 78(4), 1509-1518. doi: 10.3233/JAD-200926 PMID: 33164936
- Lee, W.J.; Shin, Y.W.; Kim, D.E.; Kweon, M.H.; Kim, M. Effect of desalted Salicornia europaea L. ethanol extract (PM-EE) on the subjects complaining memory dysfunction without dementia: A 12 week, randomized, double-blind, placebo-controlled clinical trial. Sci. Rep., 2020, 10(1), 19914. doi: 10.1038/s41598-020-76938-x PMID: 33199752
- Kamalashiran, C.; Sriyakul, K.; Pattaraarchachai, J.; Muengtaweepongsa, S. Outcomes of perilla seed oil as an additional neuroprotective therapy in patients with mild to moderate dementia: A randomized control trial. Curr. Alzheimer Res., 2019, 16(2), 146-155. doi: 10.2174/1567205016666181212153720 PMID: 30543172
- Rosli, H.; Shahar, S.; Rajab, N.F.; Che Din, N.; Haron, H. The effects of polyphenols-rich tropical fruit juice on cognitive function and metabolomics profile - A randomized controlled trial in middle-aged women. Nutr. Neurosci., 2022, 25(8), 1577-1593. doi: 10.1080/1028415X.2021.1880312 PMID: 33666540
- Awasthi, A.; Matsunaga, Y.; Yamada, T. Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp. Neurol., 2005, 196(2), 282-289. doi: 10.1016/j.expneurol.2005.08.001 PMID: 16137679
- Giraldo, E.; Lloret, A.; Fuchsberger, T.; Viña, J. Aβ and tau toxicities in Alzheimers are linked via oxidative stress-induced p38 activation: Protective role of vitamin E. Redox Biol., 2014, 2, 873-877. doi: 10.1016/j.redox.2014.03.002 PMID: 25061569
- Liu, Z.; Zhou, T.; Ziegler, AC.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 2525967. doi: 10.1155/2017/2525967
- Lees, A.J. Unresolved issues relating to the shaking palsy on the celebration of james parkinsons 250th birthday. Mov. Disord., 2007, 22(S17), S327-S334. doi: 10.1002/mds.21684 PMID: 18175393
- Miller, D.B.; OCallaghan, J.P. Biomarkers of Parkinsons disease: Present and future. Metabolism, 2015, 64(3), S40-S46. doi: 10.1016/j.metabol.2014.10.030 PMID: 25510818
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front. Cell. Neurosci., 2018, 12, 114. doi: 10.3389/fncel.2018.00114 PMID: 29755324
- Peplow, P.V.; Martinez, B. Neuroprotection by immunomodulatory agents in animal models of Parkinsons disease. Neural Regen. Res., 2018, 13(9), 1493-1506. doi: 10.4103/1673-5374.237108 PMID: 30127102
- Kobelt, G.; Thompson, A.; Berg, J.; Gannedahl, M.; Eriksson, J. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler., 2017, 23(8), 1123-1136. doi: 10.1177/1352458517694432 PMID: 28273775
- Haider, L.; Fischer, M.T.; Frischer, J.M.; Bauer, J.; Höftberger, R.; Botond, G.; Esterbauer, H.; Binder, C.J.; Witztum, J.L.; Lassmann, H. Oxidative damage in multiple sclerosis lesions. Brain, 2011, 134(7), 1914-1924. doi: 10.1093/brain/awr128 PMID: 21653539
- Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics, 2015, 12(2), 364-375. doi: 10.1007/s13311-014-0329-3 PMID: 25567201
- Petrillo, S.; Pelosi, L.; Piemonte, F.; Travaglini, L.; Forcina, L.; Catteruccia, M.; Petrini, S.; Verardo, M.; DAmico, A.; Musarò, A.; Bertini, E. Oxidative stress in Duchenne muscular dystrophy: Focus on the NRF2 redox pathway. Hum. Mol. Genet., 2017, 26(14), 2781-2790. doi: 10.1093/hmg/ddx173 PMID: 28472288
- Fusco, M.; Skaper, S.D.; Coaccioli, S.; Varrassi, G.; Paladini, A. Degenerative joint diseases and neuroinflammation. Pain Pract., 2017, 17(4), 522-532. doi: 10.1111/papr.12551 PMID: 28039964
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029 PMID: 20303877
- Varrassi, G.; Fusco, M.; Skaper, S.D.; Battelli, D.; Zis, P.; Coaccioli, S.; Pace, M.C.; Paladini, A. A pharmacological rationale to reduce the incidence of opioid induced tolerance and hyperalgesia: A review. Pain Ther., 2018, 7(1), 59-75. doi: 10.1007/s40122-018-0094-9 PMID: 29594972
- Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother., 2004, 58(1), 39-46. doi: 10.1016/j.biopha.2003.11.004 PMID: 14739060
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462. doi: 10.1016/j.cub.2014.03.034 PMID: 24845678
- Fischer, R.; Maier, O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longev., 2015, 2015, 610813. doi: 10.1155/2015/610813
- Dröse, S.; Brandt, U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J. Biol. Chem., 2008, 283(31), 21649-21654. doi: 10.1074/jbc.M803236200 PMID: 18522938
- Mueller, A.M.; Yoon, B.H.; Sadiq, S.A. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem., 2014, 289(33), 22888-22899. doi: 10.1074/jbc.M114.559583 PMID: 24973214
- Tao, L.; Zhang, F.; Hao, L.; Wu, J.; Jia, J.; Liu, J.; Zheng, L.T.; Zhen, X. 1-O-tigloyl-1-O-deacetyl-nimbolinin B inhibits LPS-stimulated inflammatory responses by suppressing NF-κB and JNK activation in microglia cells. J. Pharmacol. Sci., 2014, 125(4), 364-374. doi: 10.1254/jphs.14025FP PMID: 25018136
- Chakrabarti, S.; Munshi, S.; Banerjee, K.; Thakurta, I.G.; Sinha, M.; Bagh, M.B. Mitochondrial dysfunction during brain aging: Role of oxidative stress and modulation by antioxidant supplementation. Aging Dis., 2011, 2(3), 242-256. PMID: 22396876
- Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem., 1992, 59(5), 1609-1623. doi: 10.1111/j.1471-4159.1992.tb10990.x PMID: 1402908
- Navarro, A.; Boveris, A. Brain mitochondrial dysfunction in aging, neurodegeneration and Parkinsons disease. Front. Aging Neurosci., 2010, 2, 34. doi: 10.3389/fnagi.2010.00034 PMID: 20890446
- Mecocci, P.; Beal, M.F.; Cecchetti, R.; Polidori, M.C.; Cherubini, A.; Chionne, F.; Avellini, L.; Romano, G.; Senin, U. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol. Chem. Neuropathol., 1997, 31(1), 53-64. doi: 10.1007/BF02815160 PMID: 9271005
- Corral-Debrinski, M.; Horton, T.; Lott, M.T.; Shoffner, J.M.; Flint Beal, M.; Wallace, D.C. Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nat. Genet., 1992, 2(4), 324-329. doi: 10.1038/ng1292-324 PMID: 1303288
- Imam, S.Z.; Karahalil, B.; Hogue, B.A.; Souza-Pinto, N.C.; Bohr, V.A. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol. Aging, 2006, 27(8), 1129-1136. doi: 10.1016/j.neurobiolaging.2005.06.002 PMID: 16005114
- Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. doi: 10.2174/157015909787602823 PMID: 19721819
- Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther., 2020, 37(1), 113-139. doi: 10.1007/s12325-019-01148-5 PMID: 31782132
- Buccellato, F.R.; DAnca, M.; Fenoglio, C.; Scarpini, E.; Galimberti, D. Role of oxidative damage in alzheimers disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants, 2021, 10(9), 1353. doi: 10.3390/antiox10091353 PMID: 34572985
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709. doi: 10.1038/s41573-021-00233-1 PMID: 34194012
- Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimers and Parkinsons disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
- Goyal, A.; Agrawal, A.; Verma, A.; Dubey, N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinsons disease. Exp. Mol. Pathol., 2023, 129, 104846. doi: 10.1016/j.yexmp.2022.104846 PMID: 36436571
- Goyal, A.; Verma, A.; Agrawal, A.; Dubey, N.; Kumar, A.; Behl, T. Therapeutic implications of crocin in Parkinsons disease: A review of preclinical research. Chem. Biol. Drug Des., 2023, 101(6), 1229-1240. doi: 10.1111/cbdd.14210 PMID: 36752710
- Goyal, A.; Verma, A.; Agrawal, N. Dietary phytoestrogens: Neuroprotective role in Parkinsons disease. Curr. Neurovasc. Res., 2021, 18(2), 254-267. doi: 10.2174/1567202618666210604121233 PMID: 34086550
Supplementary files
