Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders


Cite item

Full Text

Abstract

Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.

About the authors

Sonia Singh

Institute of Pharmaceutical Research,, GLA University Mathura

Author for correspondence.
Email: info@benthamscience.net

Ashima Ahuja

Institute of Pharmaceutical Research, GLA University Mathura

Email: info@benthamscience.net

Shilpi Pathak

Institute of Pharmaceutical ResearchPharmacy, GLA University Mathura,

Email: info@benthamscience.net

References

  1. Chiurchiù, V.; Orlacchio, A.; Maccarrone, M. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxidat. Med. Cell. Long., 2016, 2016, 7909380. doi: 10.1155/2016/7909380
  2. Zheng, M.; Storz, G. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol., 2000, 59(1), 1-6. doi: 10.1016/S0006-2952(99)00289-0 PMID: 10605928
  3. Aikens, J.; Dix, T.A. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem., 1991, 266(23), 15091-15098. doi: 10.1016/S0021-9258(18)98591-1 PMID: 1869544
  4. Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95. doi: 10.1152/physrev.00018.2001 PMID: 11773609
  5. Chiurchiù, V.; Maccarrone, M. Chronic inflammatory disorders and their redox control: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2011, 15(9), 2605-2641. doi: 10.1089/ars.2010.3547 PMID: 21391902
  6. Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322. doi: 10.1104/pp.106.077073 PMID: 16760481
  7. Poulsen, H.E.; Prieme, H.; Loft, S. Role of oxidative DNA damage in cancer initiation and promotion. Eur. J. Cancer Prev., 1998, 7(1), 9-16. PMID: 9511847
  8. Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18(10), 872-879. doi: 10.1016/S0899-9007(02)00916-4 PMID: 12361782
  9. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583. doi: 10.3390/molecules24081583 PMID: 31013638
  10. Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795. doi: 10.1038/nature05292 PMID: 17051205
  11. Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxidat. Med. Cell. Longev., 2012, 2012, 428010. doi: 10.1155/2012/428010
  12. de Rijk, M.C.; Launer, L.J.; Berger, K.; Breteler, M.M.; Dartigues, J.F.; Baldereschi, M.; Fratiglioni, L.; Lobo, A.; Martinez-Lage, J.; Trenkwalder, C.; Hofman, A. Prevalence of Parkinson’s disease in Europe: A collaborative study of population-based cohorts. Neurology, 2000, 54(11), S21-S23. PMID: 10854357
  13. Bekris, L.M.; Mata, I.F.; Zabetian, C.P. The genetics of Parkinson disease. J. Geriatr. Psychiatry Neurol., 2010, 23(4), 228-242. doi: 10.1177/0891988710383572 PMID: 20938043
  14. Farrer, M.J. Genetics of Parkinson disease: Paradigm shifts and future prospects. Nat. Rev. Genet., 2006, 7(4), 306-318. doi: 10.1038/nrg1831 PMID: 16543934
  15. Alzheimer’s Association. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement., 2011, 7(2), 208-244. doi: 10.1016/j.jalz.2011.02.004 PMID: 21414557
  16. Song, P.; Zou, M.H. Roles of reactive oxygen species in physiology and pathology. In: Atherosclerosis: Risks, Mechanisms, and Therapies; Wiley, 2015. doi: 10.1002/9781118828533.ch30
  17. Federico, A.; Cardaioli, E.; Da Pozzo, P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci., 2012, 322(1-2), 254-262. doi: 10.1016/j.jns.2012.05.030 PMID: 22669122
  18. Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: Stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(s2), S357-S367. doi: 10.3233/JAD-2010-100498 PMID: 20421690
  19. Perneczky, R. Dementia prevention and reserve against neurodegenerative disease. Dialogues Clin. Neurosci., 2019, 21(1), 53-60. PMID: 31607780
  20. Banerjee, S.; McCracken, S.; Hossain, M.F.; Slaughter, G. Electrochemical detection of neurotransmitters. Biosensors, 2020, 10(8), 101. doi: 10.3390/bios10080101 PMID: 32824869
  21. Arumugasamy, S.K.; Chellasamy, G.; Gopi, S.; Govindaraju, S.; Yun, K. Current advances in the detection of neurotransmitters by nanomaterials: An update. Trends Analyt. Chem., 2020, 123, 115766. doi: 10.1016/j.trac.2019.115766
  22. Niyonambaza, S.D.; Kumar, P.; Xing, P.; Mathault, J.; De Koninck, P.; Boisselier, E.; Boukadoum, M.; Miled, A. A review of neurotransmitters sensing methods for neuro-engineering research. Appl. Sci. , 2019, 9(21), 4719. doi: 10.3390/app9214719
  23. Xia, X.; Wang, Y.; Qin, Y.; Zhao, S.; Zheng, J.C. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res. Rev., 2022, 74, 101558. doi: 10.1016/j.arr.2021.101558 PMID: 34990846
  24. Tiedje, K.E. Stevens, K.; Barnes, S.; Weaver, D.F. β-Alanine as a small molecule neurotransmitter. Neurochem. Int., 2010, 57(3), 177-188. doi: 10.1016/j.neuint.2010.06.001 PMID: 20540981
  25. Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; Busnatu, Ș.; Munteanu, C. Cellular and molecular targets for non-invasive, non-pharmacological therapeutic/rehabilitative interventions in acute ischemic stroke. Int. J. Mol. Sci., 2022, 23(2), 907. doi: 10.3390/ijms23020907 PMID: 35055089
  26. Tam, K.Y.; Ju, Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2022, 17(3), 543-549. doi: 10.4103/1673-5374.320970 PMID: 34380884
  27. Satarker, S.; Bojja, S.L.; Gurram, P.C.; Mudgal, J.; Arora, D.; Nampoothiri, M. Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells, 2022, 11(7), 1139. doi: 10.3390/cells11071139 PMID: 35406702
  28. Murley, A.G.; Rowe, J.B. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain, 2018, 141(5), 1263-1285. doi: 10.1093/brain/awx327 PMID: 29373632
  29. Le Gall, L.; Anakor, E.; Connolly, O.; Vijayakumar, U.; Duddy, W.; Duguez, S. Molecular and cellular mechanisms affected in ALS. J. Pers. Med., 2020, 10(3), 101. doi: 10.3390/jpm10030101 PMID: 32854276
  30. Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164. doi: 10.1016/j.jphs.2020.07.011 PMID: 32807662
  31. Moraes, B.J.; Coelho, P.; Fão, L.; Ferreira, I.L.; Rego, A.C. Modified glutamatergic postsynapse in neurodegenerative disorders. Neuroscience, 2021, 454, 116-139. doi: 10.1016/j.neuroscience.2019.12.002 PMID: 31887357
  32. Kazama, M.; Kato, Y.; Kakita, A.; Noguchi, N.; Urano, Y.; Masui, K.; Niida-Kawaguchi, M.; Yamamoto, T.; Watabe, K.; Kitagawa, K.; Shibata, N. Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology, 2020, 40(6), 587-598. doi: 10.1111/neup.12716 PMID: 33305472
  33. Qu, Y.; Shi, J.; Tang, Y.; Zhao, F.; Li, S.; Meng, J.; Tang, J.; Lin, X.; Peng, X.; Mu, D. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp. Neurol., 2016, 279, 223-231. doi: 10.1016/j.expneurol.2016.03.011 PMID: 26980487
  34. Gao, F.; Yin, X.; Edden, R.A.E.; Evans, A.C.; Xu, J.; Cao, G.; Li, H.; Li, M.; Zhao, B.; Wang, J.; Wang, G. Altered hippocampal GABA and glutamate levels and uncoupling from functional connectivity in multiple sclerosis. Hippocampus, 2018, 28(11), 813-823. doi: 10.1002/hipo.23001 PMID: 30069963
  35. Bukke, V.N.; Archana, M.; Villani, R.; Romano, A.D.; Wawrzyniak, A.; Balawender, K.; Orkisz, S.; Beggiato, S.; Serviddio, G.; Cassano, T. The dual role of glutamatergic neurotransmission in Alzheimer’s disease: From pathophysiology to pharmacotherapy. Int. J. Mol. Sci., 2020, 21(20), 7452. doi: 10.3390/ijms21207452 PMID: 33050345
  36. Madeira, C.; Vargas-Lopes, C.; Brandão, C.O.; Reis, T.; Laks, J.; Panizzutti, R.; Ferreira, S.T. Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Front. Psychiatry, 2018, 9, 561. doi: 10.3389/fpsyt.2018.00561 PMID: 30459657
  37. Zhang, Z.; Zhang, S.; Fu, P.; Zhang, Z.; Lin, K.; Ko, J.K.S.; Yung, K.K.L. Roles of glutamate receptors in Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(18), 4391. doi: 10.3390/ijms20184391 PMID: 31500132
  38. Tsuang, D.W.; Greenwood, T.A.; Jayadev, S.; Davis, M.; Shutes-David, A.; Bird, T.D. A genetic study of psychosis in Huntington’s disease: Evidence for the involvement of glutamate signaling pathways. J. Huntingtons Dis., 2018, 7(1), 51-59. doi: 10.3233/JHD-170277 PMID: 29480208
  39. Alcoreza, O.B.; Patel, D.C.; Tewari, B.P.; Sontheimer, H. Dysregulation of ambient glutamate and glutamate receptors in epilepsy: An astrocytic perspective. Front. Neurol., 2021, 12, 652159. doi: 10.3389/fneur.2021.652159 PMID: 33828523
  40. Koshal, P.; Jamwal, S.; Kumar, P. Glucagon-like Peptide-1 (GLP- 1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology, 2018, 136(Pt B), 271-279. doi: 10.1016/j.neuropharm.2017.11.015 PMID: 29129776
  41. Ochoa-de la Paz, L.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H. Taurine and GABA neurotransmitter receptors, a relationship with therapeutic potential? Expert Rev. Neurother., 2019, 19(4), 289-291. doi: 10.1080/14737175.2019.1593827 PMID: 30892104
  42. Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 2019, 102(1), 75-90. doi: 10.1016/j.neuron.2019.03.013 PMID: 30946828
  43. Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693(Pt B), 128-133. doi: 10.1016/j.brainres.2018.03.015 PMID: 29903615
  44. Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci., 2022, 23(11), 5954. doi: 10.3390/ijms23115954 PMID: 35682631
  45. Kölker, S. Metabolism of amino acid neurotransmitters: The synaptic disorder underlying inherited metabolic diseases. J. Inherit. Metab. Dis., 2018, 41(6), 1055-1063. doi: 10.1007/s10545-018-0201-4 PMID: 29869166
  46. Juliá-Palacios, N.; Molina-Anguita, C.; Sigatulina Bondarenko, M.; Cortès-Saladelafont, E.; Aparicio, J.; Cuadras, D.; Horvath, G.; Fons, C.; Artuch, R.; García-Cazorla, À. Monoamine neurotransmitters in early epileptic encephalopathies: New insights into pathophysiology and therapy. Dev. Med. Child Neurol., 2022, 64(7), 915-923. doi: 10.1111/dmcn.15140 PMID: 35833444
  47. Franco, R.; Reyes-Resina, I.; Navarro, G. Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines, 2021, 9(2), 109. doi: 10.3390/biomedicines9020109 PMID: 33499192
  48. Swamy, B.K.; Shiprath, K.; Rakesh, G.; Ratnam, K.V.; Manjunatha, H.; Janardan, S.; Naidu, K.C.; Ramesh, S.; Suresh, K.; Ratnamala, A. Simultaneous detection of dopamine, tyrosine and ascorbic acid using NiO/graphene modified graphite electrode. Biointerface Res. Appl. Chem., 2020, 10(3), 5599-5609. doi: 10.33263/BRIAC103.599609
  49. Swamy, B.K.; Shiprath, K.; Ratnam, K.V.; Manjunatha, H.; Janardan, S.; Ratnamala, A.; Naidu, K.C.; Ramesh, S.; Babu, K.S. Electrochemical detection of dopamine and tyrosine using metal oxide (MO, M= Cu and Ni) modified graphite electrode: A comparative study. Biointerface Res. Appl. Chem., 2020, 10(5), 6460-6473. doi: 10.33263/BRIAC105.64606473
  50. Burnstock, G. Chemical names. Trends Pharmacol. Sci., 2006, 3(27), 166-176. doi: 10.1016/j.tips.2006.01.005 PMID: 16487603
  51. Nowaczyk, A.; Kowalska, M.; Nowaczyk, J. Grześk, G. Carbon monoxide and nitric oxide as examples of the youngest class of transmitters. Int. J. Mol. Sci., 2021, 22(11), 6029. doi: 10.3390/ijms22116029 PMID: 34199647
  52. Folasire, O.; Mills, K.A.; Sellers, D.J.; Chess-Williams, R. Three gaseous neurotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide, are involved in the neurogenic relaxation responses of the porcine internal anal sphincter. J. Neurogastroenterol. Motil., 2015, 22(1), 141-148. doi: 10.5056/jnm15036 PMID: 26486177
  53. You, Y.; Ikezu, T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol. Dis., 2019, 130, 104512. doi: 10.1016/j.nbd.2019.104512 PMID: 31229685
  54. Verweij, F.J.; Bebelman, M.P.; Jimenez, C.R.; Garcia-Vallejo, J.J.; Janssen, H.; Neefjes, J.; Knol, J.C.; de Goeij-de Haas, R.; Piersma, S.R.; Baglio, S.R.; Verhage, M.; Middeldorp, J.M.; Zomer, A.; van Rheenen, J.; Coppolino, M.G.; Hurbain, I.; Raposo, G.; Smit, M.J.; Toonen, R.F.G.; van Niel, G.; Pegtel, D.M. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol., 2018, 217(3), 1129-1142. doi: 10.1083/jcb.201703206 PMID: 29339438
  55. Saeedi, S.; Israel, S.; Nagy, C.; Turecki, G. The emerging role of exosomes in mental disorders. Transl. Psychiatry, 2019, 9(1), 122. doi: 10.1038/s41398-019-0459-9 PMID: 30923321
  56. Shi, M.; Liu, C.; Cook, T.J.; Bullock, K.M.; Zhao, Y.; Ginghina, C.; Li, Y.; Aro, P.; Dator, R.; He, C.; Hipp, M.J.; Zabetian, C.P.; Peskind, E.R.; Hu, S.C.; Quinn, J.F.; Galasko, D.R.; Banks, W.A.; Zhang, J. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol., 2014, 128(5), 639-650. doi: 10.1007/s00401-014-1314-y PMID: 24997849
  57. Rudolph, L.M.; Cornil, C.A.; Mittelman-Smith, M.A.; Rainville, J.R.; Remage-Healey, L.; Sinchak, K.; Micevych, P.E. Actions of steroids: New neurotransmitters. J. Neurosci., 2016, 36(45), 11449-11458. doi: 10.1523/JNEUROSCI.2473-16.2016 PMID: 27911748
  58. D’Aniello, S.; Somorjai, I.; Garcia-Fernàndez, J.; Topo, E.; D’Aniello, A. D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J., 2011, 25(3), 1014-1027. doi: 10.1096/fj.10-168492 PMID: 21163862
  59. Relja, M. Pathophysiology and classification of neurodegenerative diseases. EJIFCC, 2004, 15(3), 97-99. PMID: 29988912
  60. Bennett, D.A.; Beckett, L.A.; Murray, A.M.; Shannon, K.M.; Goetz, C.G.; Pilgrim, D.M.; Evans, D.A. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N. Engl. J. Med., 1996, 334(2), 71-76. doi: 10.1056/NEJM199601113340202 PMID: 8531961
  61. Norris, F.; Shepherd, R.; Denys, E.; U, K.; Mukai, E.; Elias, L.; Holden, D.; Norris, H. Onset, natural history and outcome in idiopathic adult motor neuron disease. J. Neurol. Sci., 1993, 118(1), 48-55. doi: 10.1016/0022-510X(93)90245-T PMID: 8229050
  62. Margolis, R.L.; McInnis, M.G.; Rosenblatt, A.; Ross, C.A. Trinucleotide repeat expansion and neuropsychiatric disease. Arch. Gen. Psychiatry, 1999, 56(11), 1019-1031. doi: 10.1001/archpsyc.56.11.1019 PMID: 10565502
  63. Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(6), 4094-4125. doi: 10.1007/s12035-015-9337-5 PMID: 26198567
  64. Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385. PMID: 25774178
  65. Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12. doi: 10.3389/fnagi.2010.00012 PMID: 20552050
  66. Dauer, W.; Przedborski, S. Parkinson’s disease. Neuron, 2003, 39(6), 889-909. doi: 10.1016/S0896-6273(03)00568-3 PMID: 12971891
  67. Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2001, 344(22), 1688-1700. doi: 10.1056/NEJM200105313442207 PMID: 11386269
  68. Dinkova-Kostova, A.T.; Talalay, P.; Sharkey, J.; Zhang, Y.; Holtzclaw, W.D.; Wang, X.J.; David, E.; Schiavoni, K.H.; Finlayson, S.; Mierke, D.F.; Honda, T. An exceptionally potent inducer of cytoprotective enzymes: Elucidation of the structural features that determine inducer potency and reactivity with Keap1. J. Biol. Chem., 2010, 285(44), 33747-33755. doi: 10.1074/jbc.M110.163485 PMID: 20801881
  69. Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
  70. Bertram, L.; Tanzi, R.E. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778. doi: 10.1038/nrn2494 PMID: 18802446
  71. Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 2000, 71(2), 621S-629S. doi: 10.1093/ajcn/71.2.621s PMID: 10681270
  72. Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344. doi: 10.1056/NEJMra0909142 PMID: 20107219
  73. Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615. doi: 10.1016/j.tips.2008.09.001 PMID: 18838179
  74. Montine, K.S.; Reich, E.; Neely, M.D.; Sidell, K.R.; Olson, S.J.; Markesbery, W.R.; Montine, T.J. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J. Neuropathol. Exp. Neurol., 1998, 57(5), 415-425. doi: 10.1097/00005072-199805000-00005 PMID: 9596412
  75. Ahmed, N.; Ahmed, U.; Thornalley, P.J.; Hager, K.; Fleischer, G.; Münch, G. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J. Neurochem., 2005, 92(2), 255-263. doi: 10.1111/j.1471-4159.2004.02864.x PMID: 15663474
  76. Choi, J.; Rees, H.D.; Weintraub, S.T.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J. Biol. Chem., 2005, 280(12), 11648-11655. doi: 10.1074/jbc.M414327200 PMID: 15659387
  77. Wong, A.; Lüth, H.J.; Deuther-Conrad, W.; Dukic-Stefanovic, S.; Gasic-Milenkovic, J.; Arendt, T.; Münch, G. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res., 2001, 920(1-2), 32-40. doi: 10.1016/S0006-8993(01)02872-4 PMID: 11716809
  78. Poppek, D.; Keck, S.; Ermak, G.; Jung, T.; Stolzing, A.; Ullrich, O.; Davies, K.J.A.; Grune, T. Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem. J., 2006, 400(3), 511-520. doi: 10.1042/BJ20060463 PMID: 16939415
  79. Keck, S.; Nitsch, R.; Grune, T.; Ullrich, O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J. Neurochem., 2003, 85(1), 115-122. doi: 10.1046/j.1471-4159.2003.01642.x PMID: 12641733
  80. Bonda, D.J.; Lee, H.; Blair, J.A.; Zhu, X.; Perry, G.; Smith, M.A. Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 2011, 3(3), 267-270. doi: 10.1039/c0mt00074d PMID: 21298161
  81. Zhang, L.; Zhao, B.; Yew, D.T.; Kusiak, J.W.; Roth, G.S. Processing of Alzheimer’s amyloid precursor protein during H2O2-induced apoptosis in human neuronal cells. Biochem. Biophys. Res. Commun., 1997, 235(3), 845-848. doi: 10.1006/bbrc.1997.6698 PMID: 9207249
  82. Atwood, C.S.; Moir, R.D.; Huang, X.; Scarpa, R.C.; Bacarra, N.M.E.; Romano, D.M.; Hartshorn, M.A.; Tanzi, R.E.; Bush, A.I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem., 1998, 273(21), 12817-12826. doi: 10.1074/jbc.273.21.12817 PMID: 9582309
  83. Atwood, C.S.; Scarpa, R.C.; Huang, X.; Moir, R.D.; Jones, W.D.; Fairlie, D.P.; Tanzi, R.E.; Bush, A.I. Characterization of copper interactions with alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1-42. J. Neurochem., 2000, 75(3), 1219-1233. doi: 10.1046/j.1471-4159.2000.0751219.x PMID: 10936205
  84. Atwood, C.S.; Obrenovich, M.E.; Liu, T.; Chan, H.; Perry, G.; Smith, M.A.; Martins, R.N. Amyloid-β a chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Res. Brain Res. Rev., 2003, 43(1), 1-16. doi: 10.1016/S0165-0173(03)00174-7 PMID: 14499458
  85. Cherny, R.A.; Barnham, K.J.; Lynch, T.; Volitakis, I.; Li, Q.X.; McLean, C.A.; Multhaup, G.; Beyreuther, K.; Tanzi, R.E.; Masters, C.L.; Bush, A.I. Chelation and intercalation: Complementary properties in a compound for the treatment of Alzheimer’s disease. J. Struct. Biol., 2000, 130(2-3), 209-216. doi: 10.1006/jsbi.2000.4285 PMID: 10940226
  86. González, H.; Pacheco, R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J. Neuroinflammation, 2014, 11(1), 201. doi: 10.1186/s12974-014-0201-8 PMID: 25441979
  87. Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491. doi: 10.3233/JPD-130230 PMID: 24252804
  88. Puspita, L.; Chung, S.Y.; Shim, J. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain, 2017, 10(1), 53. doi: 10.1186/s13041-017-0340-9 PMID: 29183391
  89. Zeevalk, G.D.; Razmpour, R.; Bernard, L.P. Glutathione and Parkinson’s disease: Is this the elephant in the room? Biomed. Pharmacother., 2008, 62(4), 236-249. doi: 10.1016/j.biopha.2008.01.017 PMID: 18400456
  90. Torres-Vega, A.; Pliego-Rivero, B.F.; Otero-Ojeda, G.A.; Gómez-Oliván, L.M.; Vieyra-Reyes, P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr. Rev., 2012, 70(12), 679-692. doi: 10.1111/j.1753-4887.2012.00521.x PMID: 23206282
  91. Tieu, K.; Ischiropoulos, H.; Przedborski, S. Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life, 2003, 55(6), 329-335. doi: 10.1080/1521654032000114320 PMID: 12938735
  92. Hunot, S.; Boissière, F.; Faucheux, B.; Brugg, B.; Mouatt-Prigent, A.; Agid, Y.; Hirsch, E.C. Nitric oxide synthase and neuronal vulnerability in parkinson’s disease. Neuroscience, 1996, 72(2), 355-363. doi: 10.1016/0306-4522(95)00578-1 PMID: 8737406
  93. Eve, D.J.; Nisbet, A.P.; Kingsbury, A.E.; Hewson, E.L.; Daniel, S.E.; Lees, A.J.; Marsden, C.D.; Foster, O.J.F. Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res. Mol. Brain Res., 1998, 63(1), 62-71. doi: 10.1016/S0169-328X(98)00259-9 PMID: 9838046
  94. Kikuchi, S.; Shinpo, K.; Ogata, A.; Tsuji, S.; Takeuchi, M.; Makita, Z.; Tashiro, K. Detection of N epsilon-(carboxymethyl) lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotrophic lateral sclerosis and other motor neuron disorders: Official publication of the World Federation of Neurology. Res. Group Motor Neuron Dis., 2002, 3(2), 63-68.
  95. Mendez, E.F.; Sattler, R. Biomarker development for C9orf72 repeat expansion in ALS. Brain Res., 2015, 1607, 26-35. doi: 10.1016/j.brainres.2014.09.041 PMID: 25261695
  96. Lacomblez, L.; Bensimon, G.; Meininger, V.; Leigh, P.N.; Guillet, P. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet, 1996, 347(9013), 1425-1431. doi: 10.1016/S0140-6736(96)91680-3 PMID: 8676624
  97. Yoshino, H.; Kimura, A. Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study). Amyotroph. Lateral Scler., 2006, 7(4), 247-251. doi: 10.1080/17482960600881870 PMID: 17127563
  98. Louwerse, E.S.; Weverling, G.J.; Bossuyt, P.M.M.; Meyjes, F.E.P.; de Jong, J.M.B.V. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch. Neurol., 1995, 52(6), 559-564. doi: 10.1001/archneur.1995.00540300031009 PMID: 7763202
  99. Vonsattel, J.P.; DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol., 1998, 57(5), 369-384. doi: 10.1097/00005072-199805000-00001 PMID: 9596408
  100. Li, S.H.; Li, X.J. Huntingtin and its role in neuronal degeneration. Neuroscientist, 2004, 10(5), 467-475. doi: 10.1177/1073858404266777 PMID: 15359012
  101. Stack, E.C.; Matson, W.R.; Ferrante, R.J. Evidence of oxidant damage in Huntington’s disease: Translational strategies using antioxidants. Ann. N. Y. Acad. Sci., 2008, 1147(1), 79-92. doi: 10.1196/annals.1427.008 PMID: 19076433
  102. Túnez, I.; Sánchez-López, F.; Agüera, E.; Fernández-Bolaños, R.; Sánchez, F.M.; Tasset-Cuevas, I. Important role of oxidative stress biomarkers in Huntington’s disease. J. Med. Chem., 2011, 54(15), 5602-5606. doi: 10.1021/jm200605a PMID: 21678912
  103. Johri, A.; Beal, M.F. Antioxidants in huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 664-674. doi: 10.1016/j.bbadis.2011.11.014
  104. Kumar, A.; Ratan, R.R. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237. doi: 10.3233/JHD-160205 PMID: 27662334
  105. Khan, F.; Kumar Garg, V.; Kumar Singh, A.; Tinku, T. Role of free radicals and certain antioxidants in the management of huntington’s disease: A review. J. Anal. Pharm. Res., 2018, 7(4), 386-392. doi: 10.15406/japlr.2018.07.00256
  106. Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A mitochondria-associated oxidative stress perspective on Huntington’s disease. Front. Mol. Neurosci., 2018, 11, 329. doi: 10.3389/fnmol.2018.00329 PMID: 30283298
  107. Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842. doi: 10.1021/bi9020378 PMID: 20050630
  108. Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev., 2002, 23(5), 599-622. doi: 10.1210/er.2001-0039 PMID: 12372842
  109. Liochev, S.I.; Fridovich, I. The role of O2.- in the production of HO.: In vitro and in vivo . Free Radic. Biol. Med., 1994, 16(1), 29-33. doi: 10.1016/0891-5849(94)90239-9 PMID: 8299992
  110. Castro, L.; Tórtora, V.; Mansilla, S.; Radi, R. Aconitases: Non-redox iron-sulfur proteins sensitive to reactive species. Acc. Chem. Res., 2019, 52(9), 2609-2619. doi: 10.1021/acs.accounts.9b00150 PMID: 31287291
  111. Zhang, H.; Forman, H.J. 4-hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med., 2017, 111, 219-225. doi: 10.1016/j.freeradbiomed.2016.11.032 PMID: 27876535
  112. Haque, R.; Uddin, S.N.; Hossain, A. Amyloid Beta (Aβ) and oxidative stress: Progression of alzheimer’s disease. Adv. Biotechnol. Microbiol., 2018, 11(1), 555802. doi: 10.19080/AIBM.2018.11.555802
  113. Galluzzi, S.; Zanardini, R.; Ferrari, C.; Gipponi, S.; Passeggia, I.; Rampini, M.; Sgrò, G.; Genovese, S.; Fiorito, S.; Palumbo, L.; Pievani, M.; Frisoni, G.B.; Epifano, F. Cognitive and biological effects of citrus phytochemicals in subjective cognitive decline: A 36-week, randomized, placebo-controlled trial. Nutr. J., 2022, 21(1), 64. doi: 10.1186/s12937-022-00817-6 PMID: 36253765
  114. Mendoza, BM.; Ortiz, GG.; Romero, LS.; Lara, DL.; Martínez, MT.; Ramírez, MA.; Serrano, JA.; Pacheco-Moisés, FP. Dietary fish oil increases catalase activity in patients with probable Alzheimer’s disease. Nutr. Hosp., 2022, 39(6), 1364-1368.
  115. Clark, D.O.; Xu, H.; Moser, L.; Adeoye, P.; Lin, A.W.; Tangney, C.C.; Risacher, S.L.; Saykin, A.J.; Considine, R.V.; Unverzagt, F.W. MIND food and speed of processing training in older adults with low education, the MINDSpeed Alzheimer’s disease prevention pilot trial. Contemp. Clin. Trials, 2019, 84, 105814. doi: 10.1016/j.cct.2019.105814 PMID: 31326523
  116. Sala-Vila, A.; Valls-Pedret, C.; Rajaram, S.; Coll-Padrós, N.; Cofán, M.; Serra-Mir, M.; Pérez-Heras, A.M.; Roth, I.; Freitas-Simoes, T.M.; Doménech, M.; Calvo, C.; López-Illamola, A.; Bitok, E.; Buxton, N.K.; Huey, L.; Arechiga, A.; Oda, K.; Lee, G.J.; Corella, D.; Vaqué-Alcázar, L.; Sala-Llonch, R.; Bartrés-Faz, D.; Sabaté, J.; Ros, E. Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts And Healthy Aging (WAHA) study: A randomized controlled trial. Am. J. Clin. Nutr., 2020, 111(3), 590-600. doi: 10.1093/ajcn/nqz328 PMID: 31912155
  117. Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra e Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; Vasquez, E.C. Oxidative stress and dementia in Alzheimer’s patients: Effects of synbiotic supplementation. Oxid. Med. Cell. Longev., 2020, 2020, 1-14. doi: 10.1155/2020/2638703 PMID: 32411323
  118. Tamtaji, O.R.; Heidari-soureshjani, R.; Asemi, Z.; Kouchaki, E. The effects of spirulina intake on clinical and metabolic parameters in Alzheimer’s disease: A randomized, double-blind, controlled trial. Phytother. Res., 2023, 37(7), 2957-2964. doi: 10.1002/ptr.7791 PMID: 36861852
  119. Foroumandi, E.; Javan, R.; Moayed, L.; Fahimi, H.; Kheirabadi, F.; Neamatshahi, M.; Shogofteh, F.; Zarghi, A. The effects of fenugreek seed extract supplementation in patients with Alzheimer’s disease: A randomized, double-blind, placebo-controlled trial. Phytother. Res., 2023, 37(1), 285-294. doi: 10.1002/ptr.7612 PMID: 36199177
  120. Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575. doi: 10.1016/j.clnu.2018.11.034 PMID: 30642737
  121. Yang, T.; Wang, H.; Xiong, Y.; Chen, C.; Duan, K.; Jia, J.; Ma, F. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: A 12-month randomized controlled trial. J. Alzheimers Dis., 2020, 78(4), 1509-1518. doi: 10.3233/JAD-200926 PMID: 33164936
  122. Lee, W.J.; Shin, Y.W.; Kim, D.E.; Kweon, M.H.; Kim, M. Effect of desalted Salicornia europaea L. ethanol extract (PM-EE) on the subjects complaining memory dysfunction without dementia: A 12 week, randomized, double-blind, placebo-controlled clinical trial. Sci. Rep., 2020, 10(1), 19914. doi: 10.1038/s41598-020-76938-x PMID: 33199752
  123. Kamalashiran, C.; Sriyakul, K.; Pattaraarchachai, J.; Muengtaweepongsa, S. Outcomes of perilla seed oil as an additional neuroprotective therapy in patients with mild to moderate dementia: A randomized control trial. Curr. Alzheimer Res., 2019, 16(2), 146-155. doi: 10.2174/1567205016666181212153720 PMID: 30543172
  124. Rosli, H.; Shahar, S.; Rajab, N.F.; Che Din, N.; Haron, H. The effects of polyphenols-rich tropical fruit juice on cognitive function and metabolomics profile - A randomized controlled trial in middle-aged women. Nutr. Neurosci., 2022, 25(8), 1577-1593. doi: 10.1080/1028415X.2021.1880312 PMID: 33666540
  125. Awasthi, A.; Matsunaga, Y.; Yamada, T. Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp. Neurol., 2005, 196(2), 282-289. doi: 10.1016/j.expneurol.2005.08.001 PMID: 16137679
  126. Giraldo, E.; Lloret, A.; Fuchsberger, T.; Viña, J. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin E. Redox Biol., 2014, 2, 873-877. doi: 10.1016/j.redox.2014.03.002 PMID: 25061569
  127. Liu, Z.; Zhou, T.; Ziegler, AC.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 2525967. doi: 10.1155/2017/2525967
  128. Lees, A.J. Unresolved issues relating to the shaking palsy on the celebration of james parkinson’s 250th birthday. Mov. Disord., 2007, 22(S17), S327-S334. doi: 10.1002/mds.21684 PMID: 18175393
  129. Miller, D.B.; O’Callaghan, J.P. Biomarkers of Parkinson’s disease: Present and future. Metabolism, 2015, 64(3), S40-S46. doi: 10.1016/j.metabol.2014.10.030 PMID: 25510818
  130. Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front. Cell. Neurosci., 2018, 12, 114. doi: 10.3389/fncel.2018.00114 PMID: 29755324
  131. Peplow, P.V.; Martinez, B. Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease. Neural Regen. Res., 2018, 13(9), 1493-1506. doi: 10.4103/1673-5374.237108 PMID: 30127102
  132. Kobelt, G.; Thompson, A.; Berg, J.; Gannedahl, M.; Eriksson, J. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler., 2017, 23(8), 1123-1136. doi: 10.1177/1352458517694432 PMID: 28273775
  133. Haider, L.; Fischer, M.T.; Frischer, J.M.; Bauer, J.; Höftberger, R.; Botond, G.; Esterbauer, H.; Binder, C.J.; Witztum, J.L.; Lassmann, H. Oxidative damage in multiple sclerosis lesions. Brain, 2011, 134(7), 1914-1924. doi: 10.1093/brain/awr128 PMID: 21653539
  134. Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics, 2015, 12(2), 364-375. doi: 10.1007/s13311-014-0329-3 PMID: 25567201
  135. Petrillo, S.; Pelosi, L.; Piemonte, F.; Travaglini, L.; Forcina, L.; Catteruccia, M.; Petrini, S.; Verardo, M.; D’Amico, A.; Musarò, A.; Bertini, E. Oxidative stress in Duchenne muscular dystrophy: Focus on the NRF2 redox pathway. Hum. Mol. Genet., 2017, 26(14), 2781-2790. doi: 10.1093/hmg/ddx173 PMID: 28472288
  136. Fusco, M.; Skaper, S.D.; Coaccioli, S.; Varrassi, G.; Paladini, A. Degenerative joint diseases and neuroinflammation. Pain Pract., 2017, 17(4), 522-532. doi: 10.1111/papr.12551 PMID: 28039964
  137. Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029 PMID: 20303877
  138. Varrassi, G.; Fusco, M.; Skaper, S.D.; Battelli, D.; Zis, P.; Coaccioli, S.; Pace, M.C.; Paladini, A. A pharmacological rationale to reduce the incidence of opioid induced tolerance and hyperalgesia: A review. Pain Ther., 2018, 7(1), 59-75. doi: 10.1007/s40122-018-0094-9 PMID: 29594972
  139. Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother., 2004, 58(1), 39-46. doi: 10.1016/j.biopha.2003.11.004 PMID: 14739060
  140. Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462. doi: 10.1016/j.cub.2014.03.034 PMID: 24845678
  141. Fischer, R.; Maier, O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longev., 2015, 2015, 610813. doi: 10.1155/2015/610813
  142. Dröse, S.; Brandt, U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J. Biol. Chem., 2008, 283(31), 21649-21654. doi: 10.1074/jbc.M803236200 PMID: 18522938
  143. Mueller, A.M.; Yoon, B.H.; Sadiq, S.A. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem., 2014, 289(33), 22888-22899. doi: 10.1074/jbc.M114.559583 PMID: 24973214
  144. Tao, L.; Zhang, F.; Hao, L.; Wu, J.; Jia, J.; Liu, J.; Zheng, L.T.; Zhen, X. 1-O-tigloyl-1-O-deacetyl-nimbolinin B inhibits LPS-stimulated inflammatory responses by suppressing NF-κB and JNK activation in microglia cells. J. Pharmacol. Sci., 2014, 125(4), 364-374. doi: 10.1254/jphs.14025FP PMID: 25018136
  145. Chakrabarti, S.; Munshi, S.; Banerjee, K.; Thakurta, I.G.; Sinha, M.; Bagh, M.B. Mitochondrial dysfunction during brain aging: Role of oxidative stress and modulation by antioxidant supplementation. Aging Dis., 2011, 2(3), 242-256. PMID: 22396876
  146. Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem., 1992, 59(5), 1609-1623. doi: 10.1111/j.1471-4159.1992.tb10990.x PMID: 1402908
  147. Navarro, A.; Boveris, A. Brain mitochondrial dysfunction in aging, neurodegeneration and Parkinson’s disease. Front. Aging Neurosci., 2010, 2, 34. doi: 10.3389/fnagi.2010.00034 PMID: 20890446
  148. Mecocci, P.; Beal, M.F.; Cecchetti, R.; Polidori, M.C.; Cherubini, A.; Chionne, F.; Avellini, L.; Romano, G.; Senin, U. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol. Chem. Neuropathol., 1997, 31(1), 53-64. doi: 10.1007/BF02815160 PMID: 9271005
  149. Corral-Debrinski, M.; Horton, T.; Lott, M.T.; Shoffner, J.M.; Flint Beal, M.; Wallace, D.C. Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nat. Genet., 1992, 2(4), 324-329. doi: 10.1038/ng1292-324 PMID: 1303288
  150. Imam, S.Z.; Karahalil, B.; Hogue, B.A.; Souza-Pinto, N.C.; Bohr, V.A. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol. Aging, 2006, 27(8), 1129-1136. doi: 10.1016/j.neurobiolaging.2005.06.002 PMID: 16005114
  151. Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. doi: 10.2174/157015909787602823 PMID: 19721819
  152. Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther., 2020, 37(1), 113-139. doi: 10.1007/s12325-019-01148-5 PMID: 31782132
  153. Buccellato, F.R.; D’Anca, M.; Fenoglio, C.; Scarpini, E.; Galimberti, D. Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants, 2021, 10(9), 1353. doi: 10.3390/antiox10091353 PMID: 34572985
  154. Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709. doi: 10.1038/s41573-021-00233-1 PMID: 34194012
  155. Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
  156. Goyal, A.; Agrawal, A.; Verma, A.; Dubey, N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp. Mol. Pathol., 2023, 129, 104846. doi: 10.1016/j.yexmp.2022.104846 PMID: 36436571
  157. Goyal, A.; Verma, A.; Agrawal, A.; Dubey, N.; Kumar, A.; Behl, T. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research. Chem. Biol. Drug Des., 2023, 101(6), 1229-1240. doi: 10.1111/cbdd.14210 PMID: 36752710
  158. Goyal, A.; Verma, A.; Agrawal, N. Dietary phytoestrogens: Neuroprotective role in Parkinson’s disease. Curr. Neurovasc. Res., 2021, 18(2), 254-267. doi: 10.2174/1567202618666210604121233 PMID: 34086550

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers