Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs


Cite item

Full Text

Abstract

Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.

About the authors

Swati Verma

Department of Pharmacy, ITS college of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Sarvesh Paliwal

Department of Pharmacy, Banasthali Vidyapith

Email: info@benthamscience.net

References

  1. Yamada, H.; Kobayashi, M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem., 1996, 60(9), 1391-1400. doi: 10.1271/bbb.60.1391 PMID: 8987584
  2. Kirk, O.; Borchert, T.V.; Fuglsang, C.C. Industrial enzyme applications. Curr. Opin. Biotechnol., 2002, 13(4), 345-351. doi: 10.1016/S0958-1669(02)00328-2 PMID: 12323357
  3. Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhiker’s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci. (Camb.), 2020, 11(10), 2587-2605. doi: 10.1039/C9SC05746C PMID: 32206264
  4. Birmingham, W.R.; Starbird, C.A.; Panosian, T.D.; Nannemann, D.P.; Iverson, T.M.; Bachmann, B.O. Bio-retrosynthetic construction of a didanosine biosynthetic pathway. Nat. Chem. Biol., 2014, 10(5), 392-399. doi: 10.1038/nchembio.1494 PMID: 24657930
  5. Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed., 2021, 60(1), 88-119. doi: 10.1002/anie.202006648 PMID: 32558088
  6. Simić, S.; Zukić, E.; Schmermund, L.; Faber, K.; Winkler, C.K.; Kroutil, W. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods. Chem. Rev., 2022, 122(1), 1052-1126. doi: 10.1021/acs.chemrev.1c00574 PMID: 34846124
  7. Luetz, S.; Giver, L.; Lalonde, J. Engineered enzymes for chemical production. Biotechnol. Bioeng., 2008, 101(4), 647-653. doi: 10.1002/bit.22077 PMID: 18814289
  8. Rosenthal, K.; Lütz, S. Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Curr. Opin. Green Sustain. Chem., 2018, 11, 58-64. doi: 10.1016/j.cogsc.2018.03.015
  9. Hollmann, F.; Opperman, D.J.; Paul, C.E. Biocatalytic reduction reactions from a chemist’s perspective. Angew. Chem. Int. Ed., 2021, 60(11), 5644-5665. doi: 10.1002/anie.202001876 PMID: 32330347
  10. Bornscheuer, U.T.; Buchholz, K. Highlights in Biocatalysis - Historical Landmarks and Current Trends. Eng. Life Sci., 2005, 5(4), 309-323. doi: 10.1002/elsc.200520089
  11. Hughes, G.; Lewis, J.C. Introduction: Biocatalysis in Industry. Chem. Rev., 2018, 118(1), 1-3. doi: 10.1021/acs.chemrev.7b00741 PMID: 29316793
  12. Devine, P.N.; Howard, R.M.; Kumar, R.; Thompson, M.P.; Truppo, M.D.; Turner, N.J. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem., 2018, 2(12), 409-421. doi: 10.1038/s41570-018-0055-1
  13. Truppo, M.D. Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Med. Chem. Lett., 2017, 8(5), 476-480. doi: 10.1021/acsmedchemlett.7b00114 PMID: 28523096
  14. Shin, J.S.; Kim, B.G.; Liese, A.; Wandrey, C. Kinetic resolution of chiral amines with? -transaminase using an enzyme-membrane reactor. Biotechnol. Bioeng., 2001, 73(3), 179-187. doi: 10.1002/bit.1050 PMID: 11257600
  15. Sharfuddin, M.; Narumi, A.; Iwai, Y.; Miyazawa, K.; Yamada, S.; Kakuchi, T.; Kaga, H. Lipase-catalyzed dy-namic kinetic resolution of hemiaminals. Tetrahedron Asymmetry, 2003, 14(11), 1581-1585. doi: 10.1016/S0957-4166(03)00313-6
  16. de Miranda, A.S.; Miranda, L.S.M.; de Souza, R.O.M.A. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol. Adv., 2015, 33(5), 372-393. doi: 10.1016/j.biotechadv.2015.02.015 PMID: 25795055
  17. Koszelewski, D.; Lavandera, I.; Clay, D.; Guebitz, G.M.; Rozzell, D.; Kroutil, W. Formal asymmetric biocata-lytic reductive amination. Angew. Chem. Int. Ed., 2008, 47(48), 9337-9340. doi: 10.1002/anie.200803763 PMID: 18972473
  18. Bornscheuer, U.T. Biocatalysis - key to sustainable industrial chemistry. ChemSusChem, 2018, 11(18), 3142-3151. doi: 10.1002/cssc.202102709
  19. Turner, N.J.; Humphreys, L. Biocatalysis in organic synthesis: The Reterosynthetic Approach; Royal Society of Chemistry: Piccadilly, London, 2018, 1-429.
  20. Kinner, A.; Nerke, P.; Siedentop, R.; Steinmetz, T.; Classen, T.; Rosenthal, K.; Nett, M.; Pietruszka, J.; Lütz, S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines, 2022, 10(5), 964. doi: 10.3390/biomedicines10050964 PMID: 35625702
  21. Nunes, H.H.C.; Nguyen, T.D.; Dang, T.T.T. Chemoenzymatic synthesis of natural products using plant bio-catalysts. CurrOpinion in green and SusChem., 2022, 35, 1-10. doi: 10.1016/j.cogsc.2022.100627
  22. Li, J.; Amatuni, A.; Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol., 2020, 55, 111-118. doi: 10.1016/j.cbpa.2020.01.005 PMID: 32086167
  23. Nestl, B.M.; Hammer, S.C.; Nebel, B.A.; Hauer, B. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed., 2014, 53(12), 3070-3095. doi: 10.1002/anie.201302195 PMID: 24520044
  24. Noyori, R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture).Angew. Chem. Int; , 2002, 41, pp. (12)1-12. doi: 10.1002/1521-3773(20020617)41:123.0.CO;2-4.
  25. Arnold, F.H. Directed Evolution: Bringing New Chemistry to Life. Angew. Chem. Int. Ed., 2018, 57(16), 4143-4148. doi: 10.1002/anie.201708408 PMID: 29064156
  26. Pee, K.H-V; Chen, X. Catalytic mechanisms, basic roles, and biotechnological and environmental signifi-cance of halogenating enzymes. Nat. Prod. Rep., 2008, 40(3), 183-93. doi: 10.1111/j.1745-7270.2008.00390.x
  27. Li, R.J.; Tian, K.; Li, X.; Gaikaiwari, A.R.; Li, Z. Engineering P450 Monooxygenases for Highly regioselective and Active p-Hydroxylation of m-Alkylphenols. ACS Catal., 2022, 12(10), 5939-5948. doi: 10.1021/acscatal.1c06011
  28. Chen, K.; Baran, P.S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature, 2009, 459(7248), 824-828. doi: 10.1038/nature08043 PMID: 19440196
  29. Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M.M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J.C.; Ward, T.R. Artificial metalloenzymes: Reaction scope and optimization strategies. Chem. Rev., 2018, 118(1), 142-231. doi: 10.1021/acs.chemrev.7b00014 PMID: 28714313
  30. Park, S.V.; Yang, J.S.; Jo, H.; Kang, B.; Oh, S.S.; Jung, G.Y. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol. Adv., 2019, 37(8), 107452. doi: 10.1016/j.biotechadv.2019.107452 PMID: 31669138
  31. Siedentop, R.; Rosenthal, K. Industrially Relevant Enzyme Cascades for Drug Synthesis and Their Ecologi-cal Assessment. Int. J. Mol. Sci., 2022, 23(7), 3605. doi: 10.3390/ijms23073605 PMID: 35408960
  32. Expanding biocatalysis for a sustainable future. Nat. Catal., 2020, 3(3), 179-180. doi: 10.1038/s41929-020-0447-8
  33. Chakrabarty, S.; Romero, E.O.; Pyser, J.B.; Yazarians, J.A.; Narayan, A.R.H. Chemoenzymatic Total Syn-thesis of Natural Products. Acc. Chem. Res., 2021, 54(6), 1374-1384. doi: 10.1021/acs.accounts.0c00810 PMID: 33600149
  34. Reetz, M.T.; Bocola, M.; Wang, L.W.; Sanchis, J.; Cronin, A.; Arand, M. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J. Am. Chem. Soc., 2013, 135(34), 12480-12496. doi: 10.1021/ja405051f PMID: 23930719
  35. Heckmann, C.M.; Paradisi, F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem, 2020, 12(24), 6082-6102. doi: 10.1002/cctc.202001107 PMID: 33381242
  36. Armstrong, E.F. Enzymes: A Discovery and its Consequences. Nature, 1933, 131(3311), 535-537. doi: 10.1038/131535a0
  37. Fischer, E. The influence of configuration on enzyme activity (Translated from German). Ber. Dtsch. Chem. Ges., 1894, 27, 2985-2993. doi: 10.1002/cber.18940270364
  38. Feiten, M.C.; Di Luccio, M.; Santos, K.F.; de Oliveira, D.; Oliveira, J.V. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids. Appl. Biochem. Biotechnol., 2017, 182(2), 429-451. doi: 10.1007/s12010-016-2336-9 PMID: 27900555
  39. Shin, J.S.; Kim, B.G. Kinetic modeling of ω-transamination for enzymatic kinetic resolution of α-methylbenzylamine. Biotechnol. Bioeng., 1998, 60(5), 534-540. doi: 10.1002/(SICI)1097-0290(19981205)60:53.0.CO;2-L PMID: 10099461
  40. Berkessel, A.; Sebastian-Ibarz, M.L.; Müller, T.N. Lipase/aluminum-catalyzed dynamic kinetic resolution of secondary alcohols. Angew. Chem. Int. Ed., 2006, 45(39), 6567-6570. doi: 10.1002/anie.200600379 PMID: 16952181
  41. Dominy, N.J. Ferment in the family tree. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 308-309. doi: 10.1073/pnas.1421566112 PMID: 25552552
  42. de Romo, A.C. Tallow and the time capsule: Claude Bernard’s discovery of the pancreatic digestion of fat. Hist. Philos. Life Sci., 1989, 11(2), 253-274. PMID: 2700021
  43. Kazlauskas, R.J.; Bornscheuer, U.T. Biotransformations with Lipases. Biotechnology, 2008, 36-191. doi: 10.1002/9783527620999.ch3h
  44. Turner, N.J. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Curr. Opin. Chem. Biol., 2004, 8(2), 114-119. doi: 10.1016/j.cbpa.2004.02.001 PMID: 15062770
  45. Richter, M. Functional diversity of organic molecule enzyme cofactors. Nat. Prod. Rep., 2013, 30(10), 1324-1345. doi: 10.1039/c3np70045c PMID: 23934236
  46. Wong, C.H.; Whitesides, G.M. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc., 1981, 103(16), 4890-4899. doi: 10.1021/ja00406a037
  47. Baker Dockrey, S.A.; Lukowski, A.L.; Becker, M.R.; Narayan, A.R.H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem., 2018, 10(2), 119-125. doi: 10.1038/nchem.2879 PMID: 29359749
  48. Pyser, J.B.; Baker Dockrey, S.A.; Benítez, A.R.; Joyce, L.A.; Wiscons, R.A.; Smith, J.L.; Narayan, A.R.H. Ste-reodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J. Am. Chem. Soc., 2019, 141(46), 18551-18559. doi: 10.1021/jacs.9b09385 PMID: 31692339
  49. De Wildeman, S.M.A.; Sonke, T.; Schoemaker, H.E.; May, O. Biocatalytic reductions: From lab curiosity to "first choice". Acc. Chem. Res., 2007, 40(12), 1260-1266. doi: 10.1021/ar7001073 PMID: 17941701
  50. Liu, W.; Wang, P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol. Adv., 2007, 25(4), 369-384. doi: 10.1016/j.biotechadv.2007.03.002 PMID: 17459647
  51. Wichmann, R.; Vasic-Racki, D. Cofactor regeneration at the lab scale. Adv. Biochem. Eng. Biotechnol., 2005, 92, 225-260. doi: 10.1007/b98911 PMID: 15791939
  52. Hughes, D.L. Biocatalysis in Drug Development—Highlights of the Recent Patent Literature. Org. Process Res. Dev., 2018, 22(9), 1063-1080. doi: 10.1021/acs.oprd.8b00232
  53. Cassimjee, K.E.; Branneby, C.; Abedi, V.; Wells, A.; Berglund, P. Transaminations with isopropyl amine: Equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem. Commun. (Camb.), 2010, 46(30), 5569-5571. doi: 10.1039/c0cc00050g PMID: 20461279
  54. Truppo, M.D.; Rozzell, J.D.; Moore, J.C.; Turner, N.J. Rapid screening and scale-up of transaminase catalysed reactions. Org. Biomol. Chem., 2009, 7(2), 395-398. doi: 10.1039/B817730A PMID: 19109687
  55. Zachos, I.; Nowak, C.; Sieber, V. Biomimetic cofactors and methods for their recycling. Curr. Opin. Chem. Biol., 2019, 49, 59-66. doi: 10.1016/j.cbpa.2018.10.003 PMID: 30336443
  56. Kelly, S.A.; Mix, S.; Moody, T.S.; Gilmore, B.F. Transaminases for industrial biocatalysis: Novel enzyme discovery. Appl. Microbiol. Biotechnol., 2020, 104(11), 4781-4794. doi: 10.1007/s00253-020-10585-0 PMID: 32300853
  57. Savile, C.K.; Janey, J.M.; Mundorff, E.C.; Moore, J.C.; Tam, S.; Jarvis, W.R.; Colbeck, J.C.; Krebber, A.; Fleitz, F.J.; Brands, J.; Devine, P.N.; Huisman, G.W.; Hughes, G.J. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 2010, 329(5989), 305-309. doi: 10.1126/science.1188934 PMID: 20558668
  58. Slabu, I.; Galman, J.L.; Lloyd, R.C.; Turner, N.J. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal., 2017, 7(12), 8263-8284. doi: 10.1021/acscatal.7b02686
  59. Kelly, S.A.; Pohle, S.; Wharry, S.; Mix, S.; Allen, C.C.R.; Moody, T.S.; Gilmore, B.F. Application of ω-Transaminases in the Pharmaceutical Industry. Chem. Rev., 2018, 118(1), 349-367. doi: 10.1021/acs.chemrev.7b00437 PMID: 29251912
  60. Coelho, P.S.; Wang, Z.J.; Ener, M.E.; Baril, S.A.; Kannan, A.; Arnold, F.H.; Brustad, E.M. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol., 2013, 9(8), 485-487. doi: 10.1038/nchembio.1278 PMID: 23792734
  61. Ducrot, L.; Bennett, M.; Caparco, A.A.; Champion, J.A.; Bommarius, A.S.; Zaparucha, A.; Grogan, G.; Vergne-Vaxelaire, C. Biocatalytic reductive amination by native amine dehydrogenases to access short chiral al-kyl amines and amino alcohols. Front. Catal., 2021, 26, 1-14.
  62. Wandrey, C.; Liese, A.; Kihumbu, D. Industrial Biocatalysis: Past, Present, and Future. Org. Process Res. Dev., 2000, 4(4), 286-290. doi: 10.1021/op990101l
  63. Huffman, M.A.; Fryszkowska, A.; Alvizo, O.; Borra-Garske, M.; Campos, K.R.; Canada, K.A.; Devine, P.N.; Duan, D.; Forstater, J.H.; Grosser, S.T.; Halsey, H.M.; Hughes, G.J.; Jo, J.; Joyce, L.A.; Kolev, J.N.; Liang, J.; Malo-ney, K.M.; Mann, B.F.; Marshall, N.M.; McLaughlin, M.; Moore, J.C.; Murphy, G.S.; Nawrat, C.C.; Nazor, J.; Novick, S.; Patel, N.R.; Rodriguez-Granillo, A.; Robaire, S.A.; Sherer, E.C.; Truppo, M.D.; Whittaker, A.M.; Verma, D.; Xiao, L.; Xu, Y.; Yang, H. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science, 2019, 366(6470), 1255-1259. doi: 10.1126/science.aay8484 PMID: 31806816
  64. The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169. doi: 10.1093/nar/gkw1099 PMID: 27899622
  65. Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res., 2019, 47(D1), D94-D99. doi: 10.1093/nar/gky989 PMID: 30365038
  66. Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imler, H.J.; Sadkhin, B.; Slater, D.R. Tools and strategies for dis-covering novel enzymes and metabolic pathways. Perspect. Sci. (Neth.), 2016, 9, 24-32. doi: 10.1016/j.pisc.2016.07.001 PMID: 25900361
  67. Sandoval, B.A.; Hyster, T.K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol., 2020, 55, 45-51. doi: 10.1016/j.cbpa.2019.12.006 PMID: 31935627
  68. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410. doi: 10.1016/S0022-2836(05)80360-2 PMID: 2231712
  69. Boratyn, G.M.; Camacho, C.; Cooper, P.S.; Coulouris, G.; Fong, A.; Ma, N.; Madden, T.L.; Matten, W.T.; McGinnis, S.D.; Merezhuk, Y.; Raytselis, Y.; Sayers, E.W.; Tao, T.; Ye, J.; Zaretskaya, I. BLAST: A more efficient re-port with usability improvements. Nucleic Acids Res., 2013, 41(W1), W29-W33. doi: 10.1093/nar/gkt282 PMID: 23609542
  70. Rodríguez Benítez, A.; Tweedy, S.E.; Baker Dockrey, S.A.; Lukowski, A.L.; Wymore, T.; Khare, D.; Brooks, C.L., III; Palfey, B.A.; Smith, J.L.; Narayan, A.R.H. Structural basis for selectivity in flavin-dependent monooxygen-ase-catalyzed oxidative dearomatization. ACS Catal., 2019, 9(4), 3633-3640. doi: 10.1021/acscatal.8b04575 PMID: 31346489
  71. Pearson, W.R. An introduction to sequence similarity ("homology") searching. Curr. Protoc. Bioinf., 2013, 42, 1-8. doi: 10.1002/0471250953.bi0301s42
  72. Madden, T. The BLAST Sequence Analysis Tool; George Mason University: Virginia, 2013.
  73. Cai, X.H.; Jaroszewski, L.; Wooley, J.; Godzik, A. Internal organization of large protein families: Relation-ship between the sequence, structure, and function-based clustering. Proteins, 2011, 79(8), 2389-2402. doi: 10.1002/prot.23049 PMID: 21671455
  74. Rokas, A. Phylogenetic analysis of protein sequence data using the Randomized Axelerated Maximum Likelihood (RAXML) Program. Curr. Protoc. Mol. Biol., 2011, 96, 1-14.
  75. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28(10), 2731-2739. doi: 10.1093/molbev/msr121 PMID: 21546353
  76. Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol., 2013, 30(5), 1229-1235. doi: 10.1093/molbev/mst012 PMID: 23486614
  77. Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; Marugán, J.C.; Cummins, C.; Davidson, C.; Dodiya, K.; Fatima, R.; Gall, A.; Giron, C.G.; Gil, L.; Grego, T.; Haggerty, L.; Haskell, E.; Hourlier, T.; Izuogu, O.G.; Janacek, S.H.; Juettemann, T.; Kay, M.; Lavidas, I.; Le, T.; Lemos, D.; Martinez, J.G.; Maurel, T.; McDowall, M.; McMahon, A.; Mohanan, S.; Moore, B.; Nuhn, M.; Oheh, D.N.; Parker, A.; Parton, A.; Patricio, M.; Sakthivel, M.P.; Abdul Salam, A.I.; Schmitt, B.M.; Schuilenburg, H.; Sheppard, D.; Sycheva, M.; Szuba, M.; Taylor, K.; Thormann, A.; Threadgold, G.; Vullo, A.; Walts, B.; Winterbottom, A.; Zadissa, A.; Chakiachvili, M.; Flint, B.; Frankish, A.; Hunt, S.E. IIsley, G.; Kostadima, M.; Langridge, N.; Loveland, J.E.; Martin, F.J.; Morales, J.; Mudge, J.M.; Muffato, M.; Perry, E.; Ruffi-er, M.; Trevanion, S.J.; Cunningham, F.; Howe, K.L.; Zerbino, D.R.; Flicek, P. Ensembl 2020. Nucleic Acids Res., 2019, 48(D1), gkz966. doi: 10.1093/nar/gkz966 PMID: 31691826
  78. Jones, C.M.; Stres, B.; Rosenquist, M.; Hallin, S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol., 2008, 25(9), 1955-1966. doi: 10.1093/molbev/msn146 PMID: 18614527
  79. Cavalcanti, J.H.F.; Esteves-Ferreira, A.A.; Quinhones, C.G.S.; Pereira-Lima, I.A.; Nunes-Nesi, A.; Fernie, A.R.; Araújo, W.L. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol. Evol., 2014, 6(10), 2830-2848. doi: 10.1093/gbe/evu221 PMID: 25274566
  80. Siddiq, M.A.; Hochberg, G.K.A.; Thornton, J.W. Evolution of protein specificity: Insights from ancestral protein reconstruction. Curr. Opin. Struct. Biol., 2017, 47, 113-122. doi: 10.1016/j.sbi.2017.07.003 PMID: 28841430
  81. Thornton, J.W. Resurrecting ancient genes: Experimental analysis of extinct molecules. Nat. Rev. Genet., 2004, 5(5), 366-375. doi: 10.1038/nrg1324 PMID: 15143319
  82. Furukawa, R.; Toma, W.; Yamazaki, K.; Akanuma, S. Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. Sci. Rep., 2020, 10(1), 15493. doi: 10.1038/s41598-020-72418-4 PMID: 32968141
  83. O’Brien, P.J.; Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol., 1999, 6(4), R91-R105. doi: 10.1016/S1074-5521(99)80033-7 PMID: 10099128
  84. Rodríguez Benítez, A.; Narayan, A.R.H. Frontiers in Biocatalysis: Profiling Function across Sequence Space. ACS Cent. Sci., 2019, 5(11), 1747-1749. doi: 10.1021/acscentsci.9b01112 PMID: 31807675
  85. Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imker, H.J.; Sadkhin, B.; Slater, D.R.; Whalen, K.L. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(8), 1019-1037. doi: 10.1016/j.bbapap.2015.04.015 PMID: 25900361
  86. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ide-ker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  87. Atkinson, H.J.; Morris, J.H.; Ferrin, T.E.; Babbitt, P.C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One, 2009, 4(2), e4345. doi: 10.1371/journal.pone.0004345 PMID: 19190775
  88. Fisher, B.F.; Snodgrass, H.M.; Jones, K.A.; Andorfer, M.C.; Lewis, J.C. Site-Selective C–H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Cent. Sci., 2019, 5(11), 1844-1856. doi: 10.1021/acscentsci.9b00835 PMID: 31807686
  89. Wages, J.M. Polymerase Chain Reaction. Encyclopedia of Analytical Science,; 2nd ed; Worsfold, P.; Townshend, A.; Poole, C., Eds.; Elsevier: Amsterdam,, 2005, pp. 243-250.
  90. Smalla, K.; Jechalke, S.; Top, E.M. Plasmid Detection, Characterization, and Ecology. Microbiol. Spectr., 2015, 3(1), 3.1.17. doi: 10.1128/microbiolspec.PLAS-0038-2014 PMID: 26104560
  91. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed; Taylor and Francis: Milton Park, 2002, pp. 45-47.
  92. Hughes, R.A.; Ellington, A.D. Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. Cold Spring Harb. Perspect. Biol., 2017, 9(1), a023812. doi: 10.1101/cshperspect.a023812 PMID: 28049645
  93. Pal, S.K.; Bandyopadhyay, S.; Ray, S.S. Evolutionary computation in bioinformatics: A review. IEEE Trans. Syst. Man Cybern. C, 2006, 36(5), 601-615. doi: 10.1109/TSMCC.2005.855515
  94. Yang, P.; Yang, Y.H.; Zhou, B.B.; Zomaya, A.Y. A Review of Ensemble Methods in Bioinformatics. Curr. Bioinform., 2010, 5, 296-308. doi: 10.2174/157489310794072508
  95. Lee, S.Y.; Kim, H.U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol., 2015, 33(10), 1061-1072. doi: 10.1038/nbt.3365 PMID: 26448090
  96. Angov, E. Codon usage: Nature’s roadmap to expression and folding of proteins. Biotechnol. J., 2011, 6(6), 650-659. doi: 10.1002/biot.201000332 PMID: 21567958
  97. Ostrov, N.; Landon, M.; Guell, M.; Kuznetsov, G.; Teramoto, J.; Cervantes, N.; Zhou, M.; Singh, K.; Napolitano, M.G.; Moosburner, M.; Shrock, E.; Pruitt, B.W.; Conway, N.; Goodman, D.B.; Gardner, C.L.; Tyree, G.; Gonzales, A.; Wanner, B.L.; Norville, J.E.; Lajoie, M.J.; Church, G.M. Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353(6301), 819-822. doi: 10.1126/science.aaf3639 PMID: 27540174
  98. Guell, M. Conjugative Assembly Genome Engineering (CAGE). Methods Mol Biol. 2020;2075:399-40 , 2020, 2075, 399-40. doi: 10.1007/978-1-4939-9877-7_28
  99. Kudla, G.; Murray, A.W.; Tollervey, D.; Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science, 2009, 324(5924), 255-258. doi: 10.1126/science.1170160 PMID: 19359587
  100. Terpe, K. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60(5), 523-533. doi: 10.1007/s00253-002-1158-6 PMID: 12536251
  101. Nielsen, J.; Keasling, J.D. Engineering cellular metabolism. Cell, 2016, 164(6), 1185-1197. doi: 10.1016/j.cell.2016.02.004 PMID: 26967285
  102. Gonzalo, G.; Lavandera, I. Biocatal. Pract; de Gonzalo, G; Lavandera, I., Ed.; Wiley-VCH: Weinheim, 2021, pp. 467-485. doi: 10.1002/9783527824465.ch16
  103. Whittall, J.; Sutton, P.W. Applied Biocatalysis: The Chemist’s Enzyme Toolbox; Wiley; Hoboken: New Jersey, 2020, pp. 1-560. doi: 10.1002/9781119487043
  104. Mitsukura, K.; Suzuki, M.; Tada, K.; Yoshida, T.; Nagasawa, T. Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase. Org. Biomol. Chem., 2010, 8(20), 4533-4535. doi: 10.1039/C0OB00353K PMID: 20820664
  105. Mangas-Sanchez, J.; France, S.P.; Montgomery, S.L.; Aleku, G.A.; Man, H.; Sharma, M.; Ramsden, J.I.; Grogan, G.; Turner, N.J. Imine reductases (IREDs). Curr. Opin. Chem. Biol., 2017, 37, 19-25. doi: 10.1016/j.cbpa.2016.11.022 PMID: 28038349
  106. Müller, H.; Terholsen, H.; Godehard, S.P.; Badenhorst, C.P.S.; Bornscheuer, U.T. Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catal., 2021, 11(24), 14906-14915. doi: 10.1021/acscatal.1c04543
  107. Aleku, G.A.; France, S.P.; Man, H.; Mangas-Sanchez, J.; Montgomery, S.L.; Sharma, M.; Leipold, F.; Hussain, S.; Grogan, G.; Turner, N.J. A reductive aminase from Aspergillus oryzae. Nat. Chem., 2017, 9(10), 961-969. doi: 10.1038/nchem.2782 PMID: 28937665
  108. Grogan, G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS Au, 2021, 1(9), 1312-1329. doi: 10.1021/jacsau.1c00251 PMID: 34604841
  109. Urlacher, V.B.; Girhard, M. Cytochrome P450 Monooxygenases in Biotechnology and Synthetic Biology. Trends Biotechnol., 2019, 37(8), 882-897. doi: 10.1016/j.tibtech.2019.01.001 PMID: 30739814
  110. Fessner, N.D.; Badenhorst, C.P.S.; Bornscheuer, U.T. Enzyme kits to facilitate the integration of Biocatalysis in Organic Chemistry-first Aid for synthetic Chemists. ChemCatChem, 2022, 14(11), e202200156. doi: 10.1002/cctc.202200156
  111. He, Y.; Cox, R.J. The molecular steps of citrinin biosynthesis in fungi. Chem. Sci. (Camb.), 2016, 7(3), 2119-2127. doi: 10.1039/C5SC04027B PMID: 29899939
  112. Fahad, A.; Abood, A.; Fisch, K.M.; Osipow, A.; Davison, J. Avramović M.; Butts, C.P.; Piel, J.; Simp-son, T.J.; Cox, R.J. Oxidative dearomatisation: The key step of sorbicillinoid biosynthesis. Chem. Sci. (Camb.), 2014, 5(2), 523-527. doi: 10.1039/C3SC52911H PMID: 25580210
  113. Baker Dockrey, S.A.; Doyon, T.J.; Perkins, J.C.; Narayan, A.R.H. Whole cell biocatalysis platform for gram scale oxidative dearomatization of phenols. Chem. Biol. Drug Des., 2019, 93(6), 1207-1213. doi: 10.1111/cbdd.13443 PMID: 30485666
  114. France, S.P.; Hepworth, L.J.; Turner, N.J.; Flitsch, S.L. Constructing biocatalytic cascades: In vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal., 2017, 7(1), 710-724. doi: 10.1021/acscatal.6b02979
  115. On advances and challenges in biocatalysis. Nat. Catal., 2018, 1(9), 635-636. doi: 10.1038/s41929-018-0157-7
  116. Sib, A.; Gulder, T.A.M. Stereoselective total synthesis of Bisorbicillinoid natural products by enzymatic oxidative dearomatization/dimerization. Angew. Chem. Int. Ed., 2017, 56(42), 12888-12891. doi: 10.1002/anie.201705976 PMID: 28771960
  117. Clouthier, C.M.; Pelletier, J.N. Expanding the organic toolbox: A guide to integrating biocatalysis in synthesis. Chem. Soc. Rev., 2012, 41(4), 1585-1605. doi: 10.1039/c2cs15286j PMID: 22234546
  118. Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-194. doi: 10.1038/nature11117 PMID: 22575958
  119. Faber, K. Biotransformations in Organic Chemistry: A Textbook, 6th ed; Springer: Cham, 2011, pp. 1-423. doi: 10.1007/978-3-642-17393-6
  120. Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of Biocatalysis for Organic Synthesis. ACS Cent. Sci., 2021, 7(1), 55-71. doi: 10.1021/acscentsci.0c01496 PMID: 33532569
  121. Urlacher, V.B.; Girhard, M. Cytochrome P450 monooxygenases: An update on perspectives for synthetic application. Trends Biotechnol., 2012, 30(1), 26-36. doi: 10.1016/j.tibtech.2011.06.012 PMID: 21782265
  122. Schrewe, M.; Julsing, M.K.; Bühler, B.; Schmid, A. Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem. Soc. Rev., 2013, 42(15), 6346-6377. doi: 10.1039/c3cs60011d PMID: 23475180
  123. Corey, E.J.; Wipke, W.T. Computer-assisted design of complex organic syntheses. Science, 1969, 166(3902), 178-192. doi: 10.1126/science.166.3902.178 PMID: 17731475
  124. Ishida, S.; Terayama, K.; Kojima, R.; Takasu, K.; Okuno, Y. AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge. J. Chem. Inf. Model., 2022, 62(6), 1357-1367. doi: 10.1021/acs.jcim.1c01074 PMID: 35258953
  125. Zhang, X.; Lin, L.; Huang, H.; Linhardt, R.J. Chemoenzymatic Synthesis of Glycosaminoglycans. Acc. Chem. Res., 2020, 53(2), 335-346. doi: 10.1021/acs.accounts.9b00420 PMID: 31714740
  126. Pyser, J.B.; Chakrabarty, S.; Romero, E.O.; Narayan, A.R.H. State-of-the-Art Biocatalysis. ACS Cent. Sci., 2021, 7(7), 1105-1116. doi: 10.1021/acscentsci.1c00273 PMID: 34345663
  127. Jiang, Y.; Yu, Y.; Kong, M.; Mei, Y.; Yuan, L.; Huang, Z.; Kuang, K.; Wang, Z.; Yao, H.; Zou, J.; Coley, C.W.; Wei, Y. Artificial Intelligence for Retrosynthesis Prediction. Engineering, 2022, 2022, 1-8. doi: 10.1016/j.eng.2022.04.021
  128. Corey, E.J.; Cheng, X.M. The Logic of Chemical Reactions; Wiley Interscience: New York, 1995.
  129. Warren, S.; Wyatt, P. Organic Synthesis: The Disconnection Approach; Wiley: New York, 2008, pp. 1-34.
  130. de Souza, R.O.M.A.; Miranda, L.S.M.; Bornscheuer, U.T.; Bornscheuer, U.T. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry, 2017, 23(50), 12040-12063. doi: 10.1002/chem.201702235 PMID: 28514518
  131. Girvan, H.M.; Munro, A.W. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr. Opin. Chem. Biol., 2016, 31, 136-145. doi: 10.1016/j.cbpa.2016.02.018 PMID: 27015292
  132. Reetz, M.T.; Bocola, M.; Wang, L.W.; Sanchis, J.; Cronin, A.; Arand, M.; Zou, J.; Archelas, A.; Bottalla, A.L.; Naworyta, A.; Mowbray, S.L. Directed evolution of an enantioselective epoxide hydrolase: Uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc., 2009, 131(21), 7334-7343. doi: 10.1021/ja809673d PMID: 19469578
  133. Bornscheuer, U.T.; Kazlauskas, R.J. Hydrolases in Organic Synthesis –Regio- and Stereoselective Biotransformations, 2nd eds; Wiley-VCH: Weinheim, 2006, pp. 396-403. doi: 10.1002/3527607544
  134. Bornscheuer, U.T. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev., 2002, 26(1), 73-81. doi: 10.1111/j.1574-6976.2002.tb00599.x PMID: 12007643
  135. DeSantis, G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z.; Tomlinson, G. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc., 2002, 124, 9024-9025. doi: 10.1021/ja0259842 PMID: 12148986
  136. Kazumi, J.; Haggblom, M.M.; Young, L.Y. Degradation of Monochlorinated and Nonchlorinated aromatic compounds under Iron-Reducing Conditions. Appl. Environ. Microbiol., 1996, 62(9), 3554-3556. doi: 10.1128/aem.62.9.3554-3556.1996 PMID: 16535416
  137. Schallmey, A.; Schallmey, M. Recent advances on halohydrin dehalogenases—from enzyme identification to novel biocatalytic applications. Appl. Microbiol. Biotechnol., 2016, 100(18), 7827-7839. doi: 10.1007/s00253-016-7750-y PMID: 27502414
  138. Bučko, M.; Gemeiner, P.; Schenkmayerová, A.; Krajčovič, T.; Rudroff, F.; Mihovilovič, M.D. Baeyer-Villiger oxidations: Biotechnological approach. Appl. Microbiol. Biotechnol., 2016, 100(15), 6585-6599. doi: 10.1007/s00253-016-7670-x PMID: 27328941
  139. Corey, E.J.; Link, J.O. A new process for the generation of 1,3,2-oxazaborolidines, catalysts for enantioselective synthesis. Tetrahedron Lett., 1992, 33(29), 4141-4144. doi: 10.1016/S0040-4039(00)74673-9
  140. Nugent, T.C. Chiral Amine Synthesis: Methods, Developments and Applications; Wiley: New York, 2010, pp. 1-520. doi: 10.1002/9783527629541
  141. Wang, M.X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res., 2015, 48(3), 602-611. doi: 10.1021/ar500406s PMID: 25699471
  142. Gotor-Fernández, V.; Gotor, V. Biocatalytic routes to chiral amines and amino acids. Curr. Opin. Drug Discov. Devel., 2009, 12(6), 784-797. PMID: 19894190
  143. Durchschein, K.; Hall, M.; Faber, K. Unusual reactions mediated by FMN-dependent ene- and nitro-reductases. Green Chem., 2013, 15(7), 1764-1772. doi: 10.1039/c3gc40588e
  144. Kohls, H.; Steffen-Munsberg, F.; Höhne, M. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr. Opin. Chem. Biol., 2014, 19, 180-192. doi: 10.1016/j.cbpa.2014.02.021 PMID: 24721252
  145. Edmondson, D.E.; Mattevi, A.; Binda, C.; Li, M.; Hubálek, F. Structure and mechanism of monoamine oxi-dase. Curr. Med. Chem., 2004, 11(15), 1983-1993. doi: 10.2174/0929867043364784 PMID: 15279562
  146. Bracco, P.; Busch, H.; von Langermann, J.; Hanefeld, U. Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases – a review. Org. Biomol. Chem., 2016, 14(27), 6375-6389. doi: 10.1039/C6OB00934D PMID: 27282284
  147. Fuchs, M.; Farnberger, J.E.; Kroutil, W. The industrial age of biocatlytic transamination. Eur. J. Org. Chem., 2015, 2015(32), 6965-6982. doi: 10.1002/ejoc.201500852 PMID: 26726292
  148. Balkenhohl, F.; Ditrich, K.; Hauer, B.; Ladner, W. Optisch active Amine durch Lipase-katalysierte methox-yacetylierung. J. Prakt. Chem. Chem.-Zeitung, 1997, 339(1), 381-384. doi: 10.1002/prac.19973390166
  149. Chen, D.F.; Zhang, C.; Hu, Y.; Han, Z-Y.; Gong, L-Z. Catalytic enantioselective synthesis of quaternary 3,3′-indolyloxindoles by combination of Rh( II ) complexes and chiral phosphines. Org. Chem. Front., 2015, 2(8), 956-960. doi: 10.1039/C5QO00151J
  150. Ruinatscha, R.; Höllrigl, V.; Otto, K.; Schmid, A. Productivity of selective electroenzymatic reduction and oxidation reactions:Theoretical and practical considerations. Adv. Synth. Catal., 2006, 348(15), 2015-2026. doi: 10.1002/adsc.200600257
  151. Wang, Y.; San, K.Y.; Bennett, G.N. Cofactor engineering for advancing chemical biotechnology. Curr. Opin. Biotechnol., 2013, 24(6), 994-999. doi: 10.1016/j.copbio.2013.03.022 PMID: 23611567
  152. Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202. doi: 10.1073/pnas.0804348105 PMID: 18768813
  153. Lowell, A. N.; DeMars, M. D.; Slocum, S. T.; Yu, F.; Anand, K.; Chemler, J. A.; Korakavi, N.; Priessnitz, J. K.; Park, S. R.; Koch, A. A. Chemoenzymatic total synthesis and structural diversification of tylactone-based macrolide antibiotics through late-stage polyketide assembly, tailoring, and CH functionalization. J. Am.Chem. Soc. , 2017, 139, 7913-7920. doi: 10.1021/jacs.7b02875 PMID: 28525276
  154. Wang, J.; Zhang, Y.; Liu, H.; Shang, Y.; Zhou, L.; Wei, P.; Yin, W.-B.; Deng, Z.; Qu, X.; Zhou, Q. A biocatalytic hydroxylation enabled unified approach to C19-hydroxylated steroids. Nat. Commun., 2019, 10, 3378. doi: 10.1038/s41467-019-11344-0
  155. Nakamura, H.; Schultz, E. E.; Balskus, E. P. A new strategy for aromatic ring alkylation in cylindrocyclo-phane biosynthesis. Nat.Chem. Biol. , 2017, 13, 916-921. doi: 10.1038/nchembio.2421 PMID: 28671684
  156. Staunton, J.; Weissman, K.J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep., 2001, 18(4), 380-416. doi: 10.1039/a909079g PMID: 11548049
  157. Marienhagen, J.; Bott, M. Metabolic engineering of microorganisms for the synthesis of plant natural products. J. Biotechnol., 2013, 163(2), 166-178. doi: 10.1016/j.jbiotec.2012.06.001 PMID: 22687248
  158. Firn, R.D.; Jones, C.G. Natural products? a simple model to explain chemical diversity. Nat. Prod. Rep., 2003, 20(4), 382-391. doi: 10.1039/b208815k PMID: 12964834
  159. Mitsukura, K.; Suzuki, M.; Shinoda, S.; Kuramoto, T.; Yoshida, T.; Nagasawa, T. Purification and characterization of a novel (R)-imine reductase from Streptomyces sp. GF3587. Biosci. Biotechnol. Biochem., 2011, 75(9), 1778-1782. doi: 10.1271/bbb.110303 PMID: 21897027
  160. Adams, J.P.; Brown, M.J.B.; Diaz-Rodriguez, A.; Lloyd, R.C.; Roiban, G-D. Biocatalysis: A pharma perspective. Adv. Synth. Catal., 2019, 361(11), 2421-2432. doi: 10.1002/adsc.201900424
  161. Schober, M.; MacDermaid, C.; Ollis, A.A.; Chang, S.; Khan, D.; Hosford, J.; Latham, J.; Ihnken, L.A.F.; Brown, M.J.B.; Fuerst, D.; Sanganee, M.J.; Roiban, G-D. Chiral synthesis of LSD1 inhibitor GSK2879552 enabled by directed evolution of an imine reductase. Nat. Catal., 2019, 2(10), 909-915. doi: 10.1038/s41929-019-0341-4
  162. Kumar, R.; Karmilowicz, M.J.; Burke, D.; Burns, M.P.; Clark, L.A.; Connor, C.G.; Cordi, E.; Do, N.M.; Doyle, K.M.; Hoagland, S.; Lewis, C.A.; Mangan, D.; Martinez, C.A.; McInturff, E.L.; Meldrum, K.; Pearson, R.; Steflik, J.; Rane, A.; Weaver, J. Biocatalytic reductive amination from discovery to commercial manufacturing applied to abrocitinib JAK1 inhibitor. Nat. Catal., 2021, 4(9), 775-782. doi: 10.1038/s41929-021-00671-5
  163. Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852. doi: 10.1016/j.tet.2005.08.031
  164. Philpott, H.K.; Thomas, P.J.; Tew, D.; Fuerst, D.E.; Lovelock, S.L. A versatile biosynthetic approach to amide bond formation. Green Chem., 2018, 20(15), 3426-3431. doi: 10.1039/C8GC01697F
  165. Chen, Q.; Ji, C.; Song, Y.; Huang, H.; Ma, J.; Tian, X.; Ju, J. Discovery of McbB, an enzyme catalyzing the β-carboline skeleton construction in the marinacarboline biosynthetic pathway. Angew. Chem. Int. Ed., 2013, 52(38), 9980-9984. doi: 10.1002/anie.201303449 PMID: 23913777
  166. Ji, C.; Chen, Q.; Li, Q.; Huang, H.; Song, Y.; Ma, J.; Ju, J. Chemoenzymatic synthesis of β-carboline derivatives using McbA, a new ATP-dependent amide synthetase. Tetrahedron Lett., 2014, 55(35), 4901-4904. doi: 10.1016/j.tetlet.2014.07.004
  167. Petchey, M.; Cuetos, A.; Rowlinson, B.; Dannevald, S.; Frese, A.; Sutton, P.W.; Lovelock, S.; Lloyd, R.C.; Fairlamb, I.J.S.; Grogan, G. The broad aryl acid specificity of the amide bond synthetase McbA suggests potential for the biocatalytic synthesis of amides. Angew. Chem. Int. Ed., 2018, 57(36), 11584-11588. doi: 10.1002/anie.201804592 PMID: 30035356
  168. Petchey, M.R.; Rowlinson, B.; Lloyd, R.C.; Fairlamb, I.J.S.; Grogan, G. Biocatalytic synthesis of moclobe-mide using the amide bond synthetase McbA coupled with an ATP recycling system. ACS Catal., 2020, 10(8), 4659-4663. doi: 10.1021/acscatal.0c00929 PMID: 32337091
  169. Andexer, J.N.; Richter, M. Emerging enzymes for ATP regeneration in biocatalytic processes. ChemBioChem, 2015, 16(3), 380-386. doi: 10.1002/cbic.201402550 PMID: 25619338
  170. Lubberink, M.; Schnepel, C.; Citoler, J.; Derrington, S.R.; Finnigan, W.; Hayes, M.A.; Turner, N.J.; Flitsch, S.L. Biocatalytic monoacylation of symmetrical diamines and its application to the synthesis of pharmaceutically relevant amides. ACS Catal., 2020, 10(17), 10005-10009. doi: 10.1021/acscatal.0c02228
  171. Wood, A.J.L.; Weise, N.J.; Frampton, J.D.; Dunstan, M.S.; Hollas, M.A.; Derrington, S.R.; Lloyd, R.C.; Quaglia, D.; Parmeggiani, F.; Leys, D.; Turner, N.J.; Flitsch, S.L. Adenylation activity of carboxylic acid reductases enables the synthesis of amides. Angew. Chem. Int. Ed., 2017, 56(46), 14498-14501. doi: 10.1002/anie.201707918 PMID: 28940631
  172. Hetzler, B.E.; Trauner, D.; Lawrence, A.L. Natural product anticipation through synthesis. Nat. Rev. Chem., 2022, 6(3), 170-181. doi: 10.1038/s41570-021-00345-7 PMID: 36747591
  173. Novak, A.J.E.; Grigglestone, C.E.; Trauner, D. A biomimetic synthesis elucidates the origin of preuisolactone A. J. Am. Chem. Soc., 2019, 141(39), 15515-15518. doi: 10.1021/jacs.9b08892 PMID: 31518120
  174. Powers, Z.; Scharf, A.; Cheng, A.; Yang, F.; Himmelbauer, M.; Mitsuhashi, T.; Barra, L.; Taniguchi, Y.; Kiku-chi, T.; Fujita, M.; Abe, I.; Porco, J.A., Jr Biomimetic synthesis of meroterpenoids by dearomatization-driven polycyclization. Angew. Chem. Int. Ed., 2019, 58(45), 16141-16146. doi: 10.1002/anie.201910710 PMID: 31515901
  175. Gu, J.H.; Wang, W.J.; Chen, J.Z.; Liu, J.S.; Li, N.P.; Cheng, M.J.; Hu, L.J.; Li, C.C.; Ye, W.C.; Wang, L. Leptos-perols A and B, two cinnamoylphloroglucinol–sesquiterpenoid hybrids from Leptospermum scoparium: Structural elucidation and biomimetic synthesis. Org. Lett., 2020, 22(5), 1796-1800. doi: 10.1021/acs.orglett.0c00109 PMID: 32091219
  176. Kries, H.; O’Connor, S.E. Biocatalysts from alkaloid producing plants. Curr. Opin. Chem. Biol., 2016, 31, 22-30. doi: 10.1016/j.cbpa.2015.12.006 PMID: 26773811
  177. Zhao, J.; Méndez-Sánchez, D.; Roddan, R.; Ward, J.M.; Hailes, H.C. Norcoclaurine synthase-mediated stereoselective synthesis of 1,10 -disubstituted, spiro- and bis-tetrahydroisoquinoline alkaloids. ACS Catal., 2021, 11(1), 131-138. doi: 10.1021/acscatal.0c04704
  178. Schneider, P.; Henßen, B.; Paschold, B.; Chapple, B.P.; Schatton, M.; Seebeck, F.P.; Classen, T.; Pietruszka, J. Biocatalytic C3-indole methylation—A useful tool for the natural-product-inspired stereoselective synthesis of pyrroloindoles. Angew. Chem. Int. Ed., 2021, 60(43), 23412-23418. doi: 10.1002/anie.202107619 PMID: 34399441
  179. Liao, C.; Seebeck, F.P. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat. Catal., 2019, 2(8), 696-701. doi: 10.1038/s41929-019-0300-0
  180. Brufani, M.; Castellano, C.; Marta, M.; Oliverio, A.; Pagella, P.G.; Pavone, F.; Pomponi, M.; Rugarli, P.L. A long-lasting cholinesterase inhibitor affecting neural and behavioral processes. Pharmacol. Biochem. Behav., 1987, 26(3), 625-629. doi: 10.1016/0091-3057(87)90176-6 PMID: 3575379
  181. Iijima, S.; Greig, N.H.; Garofalo, P.; Spangler, E.L.; Heller, B.; Brossi, A.; Ingram, D.K. Phenserine: A physostigmine derivative that is a long-acting inhibitor of cholinesterase and demonstrates a wide dose range for at-tenuating a scopolamine-induced learning impairment of rats in a 14-unit T-maze. Psychopharmacology (Berl.), 1993, 112(4), 415-420. doi: 10.1007/BF02244888 PMID: 7871051
  182. Winand, L.; Schneider, P.; Kruth, S.; Greven, N.J.; Hiller, W.; Kaiser, M.; Pietruszka, J.; Nett, M. Mutasyn-thesis of Physostigmines in Myxococcus xanthus. Org. Lett., 2021, 23(16), 6563-6567. doi: 10.1021/acs.orglett.1c02374 PMID: 34355569
  183. Zhao, J. Synthesis of Tetrahydroisoquinoline Alkaloids using Norcoclaurine Synthase and Phosphate Buffer mediated Pictet- Spengler Reactions., PhD thesis, University College London., 2020.
  184. Schneider, A.; Jegl, P.; Hauer, B. Stereoselective directed cationic cascades enabled by molecular anchoring in terpene cyclases. Angew. Chem. Int. Ed., 2021, 60(24), 13251-13256. doi: 10.1002/anie.202101228 PMID: 33769659
  185. Cosgrove, S.C.; Miller, G.J. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin. Drug Discov., 2022, 17(4), 355-364. doi: 10.1080/17460441.2022.2039620 PMID: 35133222
  186. Nyhan, W.L. Nucleotide synthesis via salvage pathway.Encyclopedia of Life Sciences; John Wiley & Sons: Hoboken, New Jersey, 2021. doi: 10.1002/9780470015902.a0001399.pub3
  187. Taylor, L.L.; Goldberg, F.W.; Hii, K.K.M. Asymmetric synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantioselective aza-Michael reaction. Org. Biomol. Chem., 2012, 10(22), 4424-4432. doi: 10.1039/c2ob25122a PMID: 22565504
  188. Englund, J.A.; Baker, C.J.; Raskino, C.; McKinney, R.E.; Petrie, B.; Fowler, M.G.; Pearson, D.; Gershon, A.; McSherry, G.D.; Abrams, E.J.; Schliozberg, J.; Sullivan, J.L.; Behrman, R.; Connor, J.C.; Hetherington, S.; Lifschitz, M.H.; McLaren, C.; Mendez, H.; Millison, K.; Moye, J.; Nozyce, M.; O’Donnell, K.; Purdue, L.; Schoenfeld, D.; Scott, G.; Spector, S.A.; Wara, D.W. Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV-infected children. AIDS Clinical Trials Group (ACTG) Study 152 Team. N. Engl. J. Med., 1997, 336(24), 1704-1712. doi: 10.1056/NEJM199706123362403 PMID: 9182213
  189. Nawrat, C.C.; Whittaker, A.M.; Huffman, M.A.; McLaughlin, M.; Cohen, R.D.; Andreani, T.; Ding, B.; Li, H.; Weisel, M.; Tschaen, D.M. Nine-step stereoselective synthesis of islatravir from deoxyribose. Org. Lett., 2020, 22(6), 2167-2172. doi: 10.1021/acs.orglett.0c00239 PMID: 32108487
  190. Albers, E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â€2-methylthioadenosine. IUBMB Life, 2009, 61(12), 1132-1142. doi: 10.1002/iub.278 PMID: 19946895
  191. Kamel, S.; Weiß, M.; Klare, H.F.T.; Mikhailopulo, I.A.; Neubauer, P.; Wagner, A. Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. Molecular Catalysis, 2018, 458, 52-59. doi: 10.1016/j.mcat.2018.07.028
  192. Kaspar, F.; Giessmann, R.T.; Neubauer, P.; Wagner, A.; Gimpel, M. Thermodynamic reaction control of nucleoside phosphorolysis. Adv. Synth. Catal., 2020, 362(4), 867-876. doi: 10.1002/adsc.201901230
  193. Alexeev, C.S.; Kulikova, I.V.; Gavryushov, S.; Tararov, V.I.; Mikhailov, S.N. Quantitative prediction of yield in transglycosylation reaction catalyzed by nucleoside phosphorylases. Adv. Synth. Catal., 2018, 360(16), 3090-3096. doi: 10.1002/adsc.201800411
  194. McIntosh, J.A.; Benkovics, T.; Silverman, S.M.; Huffman, M.A.; Kong, J.; Maligres, P.E.; Itoh, T.; Yang, H.; Verma, D.; Pan, W.; Ho, H.I.; Vroom, J.; Knight, A.M.; Hurtak, J.A.; Klapars, A.; Fryszkowska, A.; Morris, W.J.; Strotman, N.A.; Murphy, G.S.; Maloney, K.M.; Fier, P.S. Engineered Ribosyl-1-Kinase enables concise synthesis of molnupiravir, an anti-viral for COVID-19. ACS Cent. Sci., 2021, 7(12), 1980-1985. doi: 10.1021/acscentsci.1c00608 PMID: 34963891
  195. Bennett, J.W. From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics. Can. J. Bot., 1995, 73(S1), 917-924. doi: 10.1139/b95-339
  196. Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci., 2008, 29(10), 520-527. doi: 10.1016/j.tips.2008.07.004 PMID: 18752857
  197. Demiray, M.; Tang, X.; Wirth, T.; Faraldos, J.A.; Allemann, R.K. An efficient chemoenzymatic synthesis of dihydroartemisinic aldehyde. Angew. Chem. Int. Ed., 2017, 56(15), 4347-4350. doi: 10.1002/anie.201609557 PMID: 28294491
  198. Lévesque, F.; Seeberger, P.H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed., 2012, 51(7), 1706-1709. doi: 10.1002/anie.201107446 PMID: 22250044
  199. Ro, D.K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; Chang, M.C.Y.; Withers, S.T.; Shiba, Y.; Sarpong, R.; Keasling, J.D. Production of the antimalar-ial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086), 940-943. doi: 10.1038/nature04640 PMID: 16612385
  200. Botta, B.; Monache, G.; Misiti, D.; Vitali, A.; Zappia, G. Aryltetralin lignans: Chemistry, pharmacology and biotransformations. Curr. Med. Chem., 2001, 8(11), 1363-1381. doi: 10.2174/0929867013372292 PMID: 11562272
  201. Li, J.; Zhang, X.; Renata, H. Asymmetric chemoenzymatic synthesis of (-)-podophyllotoxin and related aryltetralin lignans. Angew. Chem. Int. Ed., 2019, 58(34), 11657-11660. doi: 10.1002/anie.201904102 PMID: 31241812
  202. DeMartino, M.P.; Chen, K.; Baran, P.S. Intermolecular enolate heterocoupling: Scope, mechanism, and application. J. Am. Chem. Soc., 2008, 130(34), 11546-11560. doi: 10.1021/ja804159y PMID: 18680297
  203. Chang, W.; Yang, Z.J.; Tu, Y.H.; Chien, T.C. Reaction mechanism of a nonheme iron enzyme catalyzed oxi-dative cyclization via C–C bond formation. Org. Lett., 2019, 21(1), 228-232. doi: 10.1021/acs.orglett.8b03670 PMID: 30550285
  204. Lazzarotto, M.; Hammerer, L.; Hetmann, M.; Borg, A.; Schmermund, L.; Steiner, L.; Hartmann, P.; Belaj, F.; Kroutil, W.; Gruber, K.; Fuchs, M. Chemoenzymatic total synthesis of deoxy-, epi-, and podophyllotoxin and a biocatalytic kinetic resolution of dibenzylbutyrolactones. Angew. Chem. Int. Ed., 2019, 58(24), 8226-8230. doi: 10.1002/anie.201900926 PMID: 30920120
  205. Sridharan, V.; Suryavanshi, P.A.; Menéndez, J.C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev., 2011, 111(11), 7157-7259. doi: 10.1021/cr100307m PMID: 21830756
  206. Cosgrove, S.C.; Hussain, S.; Turner, N.J.; Marsden, S.P. Synergistic Chemo/Biocatalytic Synthesis of Alkaloidal Tetrahydroquinolines. ACS Catal., 2018, 8(6), 5570-5573. doi: 10.1021/acscatal.8b01220
  207. Ghislieri, D.; Green, A.P.; Pontini, M.; Willies, S.C.; Rowles, I.; Frank, A.; Grogan, G.; Turner, N.J. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J. Am. Chem. Soc., 2013, 135(29), 10863-10869. doi: 10.1021/ja4051235 PMID: 23808566
  208. Deng, G.; Wan, N.; Qin, L.; Cui, B.; An, M.; Han, W.; Chen, Y. Deracemization of Phenyl-Substituted 2 Methyl-1,2,3,4 Tetrahydroquinolines by a Recombinant Monoamine Oxidase from Pseudomo-nas monteilii ZMU-T01. ChemCatChem, 2018, 10(11), 2374-2377. doi: 10.1002/cctc.201701995
  209. Yao, P.; Cong, P.; Gong, R.; Li, J.; Li, G.; Ren, J.; Feng, J.; Lin, J.; Lau, P.C.K.; Wu, Q.; Zhu, D. Biocatalytic Route to Chiral 2-Substituted-1,2,3,4-Tetrahydroquinolines Using Cyclohexylamine Oxidase Muteins. ACS Catal., 2018, 8(3), 1648-1652. doi: 10.1021/acscatal.7b03552
  210. Chapman, J.; Ismail, A.; Dinu, C. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 2018, 8(6), 238. doi: 10.3390/catal8060238
  211. Liese, A.; Seelbach, K.; Wandrey, C. Industrial biotransformations; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2006. doi: 10.1002/3527608184
  212. Neto, R.N.M.; Barros Gomes, E.; Weba-Soares, L.; Dias, L.R.L.; da Silva, L.C.N.; de Miranda, R.C.M. Bio-technological Production of Statins: Metabolic Aspects and Genetic Approaches. Curr. Pharm. Biotechnol., 2019, 20(15), 1244-1259. doi: 10.2174/1389201020666190718165746 PMID: 31333127
  213. Walsh, G. Biopharmaceuticals: Biochemistry and biotechnology; John Wiley & Sons; Hoboken: New Jersey, 2018, pp. 1-576.
  214. Bartsch, T.; Becker, M.; Rolf, J.; Rosenthal, K.; Lütz, S. Biotechnological production of cyclic dinucleo-tides—Challenges and opportunities. Biotechnol. Bioeng., 2022, 119(3), 677-684. doi: 10.1002/bit.28027 PMID: 34953086

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers