Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs
- Authors: Verma S.1, Paliwal S.2
-
Affiliations:
- Department of Pharmacy, ITS college of Pharmacy
- Department of Pharmacy, Banasthali Vidyapith
- Issue: Vol 25, No 4 (2024)
- Pages: 448-467
- Section: Biotechnology
- URL: https://clinpractice.ru/1389-2010/article/view/644806
- DOI: https://doi.org/10.2174/0113892010238984231019085154
- ID: 644806
Cite item
Full Text
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
About the authors
Swati Verma
Department of Pharmacy, ITS college of Pharmacy
Author for correspondence.
Email: info@benthamscience.net
Sarvesh Paliwal
Department of Pharmacy, Banasthali Vidyapith
Email: info@benthamscience.net
References
- Yamada, H.; Kobayashi, M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem., 1996, 60(9), 1391-1400. doi: 10.1271/bbb.60.1391 PMID: 8987584
- Kirk, O.; Borchert, T.V.; Fuglsang, C.C. Industrial enzyme applications. Curr. Opin. Biotechnol., 2002, 13(4), 345-351. doi: 10.1016/S0958-1669(02)00328-2 PMID: 12323357
- Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhikers guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci. (Camb.), 2020, 11(10), 2587-2605. doi: 10.1039/C9SC05746C PMID: 32206264
- Birmingham, W.R.; Starbird, C.A.; Panosian, T.D.; Nannemann, D.P.; Iverson, T.M.; Bachmann, B.O. Bio-retrosynthetic construction of a didanosine biosynthetic pathway. Nat. Chem. Biol., 2014, 10(5), 392-399. doi: 10.1038/nchembio.1494 PMID: 24657930
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed., 2021, 60(1), 88-119. doi: 10.1002/anie.202006648 PMID: 32558088
- Simić, S.; Zukić, E.; Schmermund, L.; Faber, K.; Winkler, C.K.; Kroutil, W. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods. Chem. Rev., 2022, 122(1), 1052-1126. doi: 10.1021/acs.chemrev.1c00574 PMID: 34846124
- Luetz, S.; Giver, L.; Lalonde, J. Engineered enzymes for chemical production. Biotechnol. Bioeng., 2008, 101(4), 647-653. doi: 10.1002/bit.22077 PMID: 18814289
- Rosenthal, K.; Lütz, S. Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Curr. Opin. Green Sustain. Chem., 2018, 11, 58-64. doi: 10.1016/j.cogsc.2018.03.015
- Hollmann, F.; Opperman, D.J.; Paul, C.E. Biocatalytic reduction reactions from a chemists perspective. Angew. Chem. Int. Ed., 2021, 60(11), 5644-5665. doi: 10.1002/anie.202001876 PMID: 32330347
- Bornscheuer, U.T.; Buchholz, K. Highlights in Biocatalysis - Historical Landmarks and Current Trends. Eng. Life Sci., 2005, 5(4), 309-323. doi: 10.1002/elsc.200520089
- Hughes, G.; Lewis, J.C. Introduction: Biocatalysis in Industry. Chem. Rev., 2018, 118(1), 1-3. doi: 10.1021/acs.chemrev.7b00741 PMID: 29316793
- Devine, P.N.; Howard, R.M.; Kumar, R.; Thompson, M.P.; Truppo, M.D.; Turner, N.J. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem., 2018, 2(12), 409-421. doi: 10.1038/s41570-018-0055-1
- Truppo, M.D. Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Med. Chem. Lett., 2017, 8(5), 476-480. doi: 10.1021/acsmedchemlett.7b00114 PMID: 28523096
- Shin, J.S.; Kim, B.G.; Liese, A.; Wandrey, C. Kinetic resolution of chiral amines with? -transaminase using an enzyme-membrane reactor. Biotechnol. Bioeng., 2001, 73(3), 179-187. doi: 10.1002/bit.1050 PMID: 11257600
- Sharfuddin, M.; Narumi, A.; Iwai, Y.; Miyazawa, K.; Yamada, S.; Kakuchi, T.; Kaga, H. Lipase-catalyzed dy-namic kinetic resolution of hemiaminals. Tetrahedron Asymmetry, 2003, 14(11), 1581-1585. doi: 10.1016/S0957-4166(03)00313-6
- de Miranda, A.S.; Miranda, L.S.M.; de Souza, R.O.M.A. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol. Adv., 2015, 33(5), 372-393. doi: 10.1016/j.biotechadv.2015.02.015 PMID: 25795055
- Koszelewski, D.; Lavandera, I.; Clay, D.; Guebitz, G.M.; Rozzell, D.; Kroutil, W. Formal asymmetric biocata-lytic reductive amination. Angew. Chem. Int. Ed., 2008, 47(48), 9337-9340. doi: 10.1002/anie.200803763 PMID: 18972473
- Bornscheuer, U.T. Biocatalysis - key to sustainable industrial chemistry. ChemSusChem, 2018, 11(18), 3142-3151. doi: 10.1002/cssc.202102709
- Turner, N.J.; Humphreys, L. Biocatalysis in organic synthesis: The Reterosynthetic Approach; Royal Society of Chemistry: Piccadilly, London, 2018, 1-429.
- Kinner, A.; Nerke, P.; Siedentop, R.; Steinmetz, T.; Classen, T.; Rosenthal, K.; Nett, M.; Pietruszka, J.; Lütz, S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines, 2022, 10(5), 964. doi: 10.3390/biomedicines10050964 PMID: 35625702
- Nunes, H.H.C.; Nguyen, T.D.; Dang, T.T.T. Chemoenzymatic synthesis of natural products using plant bio-catalysts. CurrOpinion in green and SusChem., 2022, 35, 1-10. doi: 10.1016/j.cogsc.2022.100627
- Li, J.; Amatuni, A.; Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol., 2020, 55, 111-118. doi: 10.1016/j.cbpa.2020.01.005 PMID: 32086167
- Nestl, B.M.; Hammer, S.C.; Nebel, B.A.; Hauer, B. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed., 2014, 53(12), 3070-3095. doi: 10.1002/anie.201302195 PMID: 24520044
- Noyori, R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture).Angew. Chem. Int; , 2002, 41, pp. (12)1-12. doi: 10.1002/1521-3773(20020617)41:123.0.CO;2-4.
- Arnold, F.H. Directed Evolution: Bringing New Chemistry to Life. Angew. Chem. Int. Ed., 2018, 57(16), 4143-4148. doi: 10.1002/anie.201708408 PMID: 29064156
- Pee, K.H-V; Chen, X. Catalytic mechanisms, basic roles, and biotechnological and environmental signifi-cance of halogenating enzymes. Nat. Prod. Rep., 2008, 40(3), 183-93. doi: 10.1111/j.1745-7270.2008.00390.x
- Li, R.J.; Tian, K.; Li, X.; Gaikaiwari, A.R.; Li, Z. Engineering P450 Monooxygenases for Highly regioselective and Active p-Hydroxylation of m-Alkylphenols. ACS Catal., 2022, 12(10), 5939-5948. doi: 10.1021/acscatal.1c06011
- Chen, K.; Baran, P.S. Total synthesis of eudesmane terpenes by site-selective CH oxidations. Nature, 2009, 459(7248), 824-828. doi: 10.1038/nature08043 PMID: 19440196
- Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M.M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J.C.; Ward, T.R. Artificial metalloenzymes: Reaction scope and optimization strategies. Chem. Rev., 2018, 118(1), 142-231. doi: 10.1021/acs.chemrev.7b00014 PMID: 28714313
- Park, S.V.; Yang, J.S.; Jo, H.; Kang, B.; Oh, S.S.; Jung, G.Y. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol. Adv., 2019, 37(8), 107452. doi: 10.1016/j.biotechadv.2019.107452 PMID: 31669138
- Siedentop, R.; Rosenthal, K. Industrially Relevant Enzyme Cascades for Drug Synthesis and Their Ecologi-cal Assessment. Int. J. Mol. Sci., 2022, 23(7), 3605. doi: 10.3390/ijms23073605 PMID: 35408960
- Expanding biocatalysis for a sustainable future. Nat. Catal., 2020, 3(3), 179-180. doi: 10.1038/s41929-020-0447-8
- Chakrabarty, S.; Romero, E.O.; Pyser, J.B.; Yazarians, J.A.; Narayan, A.R.H. Chemoenzymatic Total Syn-thesis of Natural Products. Acc. Chem. Res., 2021, 54(6), 1374-1384. doi: 10.1021/acs.accounts.0c00810 PMID: 33600149
- Reetz, M.T.; Bocola, M.; Wang, L.W.; Sanchis, J.; Cronin, A.; Arand, M. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J. Am. Chem. Soc., 2013, 135(34), 12480-12496. doi: 10.1021/ja405051f PMID: 23930719
- Heckmann, C.M.; Paradisi, F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem, 2020, 12(24), 6082-6102. doi: 10.1002/cctc.202001107 PMID: 33381242
- Armstrong, E.F. Enzymes: A Discovery and its Consequences. Nature, 1933, 131(3311), 535-537. doi: 10.1038/131535a0
- Fischer, E. The influence of configuration on enzyme activity (Translated from German). Ber. Dtsch. Chem. Ges., 1894, 27, 2985-2993. doi: 10.1002/cber.18940270364
- Feiten, M.C.; Di Luccio, M.; Santos, K.F.; de Oliveira, D.; Oliveira, J.V. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids. Appl. Biochem. Biotechnol., 2017, 182(2), 429-451. doi: 10.1007/s12010-016-2336-9 PMID: 27900555
- Shin, J.S.; Kim, B.G. Kinetic modeling of ω-transamination for enzymatic kinetic resolution of α-methylbenzylamine. Biotechnol. Bioeng., 1998, 60(5), 534-540. doi: 10.1002/(SICI)1097-0290(19981205)60:53.0.CO;2-L PMID: 10099461
- Berkessel, A.; Sebastian-Ibarz, M.L.; Müller, T.N. Lipase/aluminum-catalyzed dynamic kinetic resolution of secondary alcohols. Angew. Chem. Int. Ed., 2006, 45(39), 6567-6570. doi: 10.1002/anie.200600379 PMID: 16952181
- Dominy, N.J. Ferment in the family tree. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 308-309. doi: 10.1073/pnas.1421566112 PMID: 25552552
- de Romo, A.C. Tallow and the time capsule: Claude Bernards discovery of the pancreatic digestion of fat. Hist. Philos. Life Sci., 1989, 11(2), 253-274. PMID: 2700021
- Kazlauskas, R.J.; Bornscheuer, U.T. Biotransformations with Lipases. Biotechnology, 2008, 36-191. doi: 10.1002/9783527620999.ch3h
- Turner, N.J. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Curr. Opin. Chem. Biol., 2004, 8(2), 114-119. doi: 10.1016/j.cbpa.2004.02.001 PMID: 15062770
- Richter, M. Functional diversity of organic molecule enzyme cofactors. Nat. Prod. Rep., 2013, 30(10), 1324-1345. doi: 10.1039/c3np70045c PMID: 23934236
- Wong, C.H.; Whitesides, G.M. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc., 1981, 103(16), 4890-4899. doi: 10.1021/ja00406a037
- Baker Dockrey, S.A.; Lukowski, A.L.; Becker, M.R.; Narayan, A.R.H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem., 2018, 10(2), 119-125. doi: 10.1038/nchem.2879 PMID: 29359749
- Pyser, J.B.; Baker Dockrey, S.A.; Benítez, A.R.; Joyce, L.A.; Wiscons, R.A.; Smith, J.L.; Narayan, A.R.H. Ste-reodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J. Am. Chem. Soc., 2019, 141(46), 18551-18559. doi: 10.1021/jacs.9b09385 PMID: 31692339
- De Wildeman, S.M.A.; Sonke, T.; Schoemaker, H.E.; May, O. Biocatalytic reductions: From lab curiosity to "first choice". Acc. Chem. Res., 2007, 40(12), 1260-1266. doi: 10.1021/ar7001073 PMID: 17941701
- Liu, W.; Wang, P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol. Adv., 2007, 25(4), 369-384. doi: 10.1016/j.biotechadv.2007.03.002 PMID: 17459647
- Wichmann, R.; Vasic-Racki, D. Cofactor regeneration at the lab scale. Adv. Biochem. Eng. Biotechnol., 2005, 92, 225-260. doi: 10.1007/b98911 PMID: 15791939
- Hughes, D.L. Biocatalysis in Drug DevelopmentHighlights of the Recent Patent Literature. Org. Process Res. Dev., 2018, 22(9), 1063-1080. doi: 10.1021/acs.oprd.8b00232
- Cassimjee, K.E.; Branneby, C.; Abedi, V.; Wells, A.; Berglund, P. Transaminations with isopropyl amine: Equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem. Commun. (Camb.), 2010, 46(30), 5569-5571. doi: 10.1039/c0cc00050g PMID: 20461279
- Truppo, M.D.; Rozzell, J.D.; Moore, J.C.; Turner, N.J. Rapid screening and scale-up of transaminase catalysed reactions. Org. Biomol. Chem., 2009, 7(2), 395-398. doi: 10.1039/B817730A PMID: 19109687
- Zachos, I.; Nowak, C.; Sieber, V. Biomimetic cofactors and methods for their recycling. Curr. Opin. Chem. Biol., 2019, 49, 59-66. doi: 10.1016/j.cbpa.2018.10.003 PMID: 30336443
- Kelly, S.A.; Mix, S.; Moody, T.S.; Gilmore, B.F. Transaminases for industrial biocatalysis: Novel enzyme discovery. Appl. Microbiol. Biotechnol., 2020, 104(11), 4781-4794. doi: 10.1007/s00253-020-10585-0 PMID: 32300853
- Savile, C.K.; Janey, J.M.; Mundorff, E.C.; Moore, J.C.; Tam, S.; Jarvis, W.R.; Colbeck, J.C.; Krebber, A.; Fleitz, F.J.; Brands, J.; Devine, P.N.; Huisman, G.W.; Hughes, G.J. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 2010, 329(5989), 305-309. doi: 10.1126/science.1188934 PMID: 20558668
- Slabu, I.; Galman, J.L.; Lloyd, R.C.; Turner, N.J. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal., 2017, 7(12), 8263-8284. doi: 10.1021/acscatal.7b02686
- Kelly, S.A.; Pohle, S.; Wharry, S.; Mix, S.; Allen, C.C.R.; Moody, T.S.; Gilmore, B.F. Application of ω-Transaminases in the Pharmaceutical Industry. Chem. Rev., 2018, 118(1), 349-367. doi: 10.1021/acs.chemrev.7b00437 PMID: 29251912
- Coelho, P.S.; Wang, Z.J.; Ener, M.E.; Baril, S.A.; Kannan, A.; Arnold, F.H.; Brustad, E.M. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol., 2013, 9(8), 485-487. doi: 10.1038/nchembio.1278 PMID: 23792734
- Ducrot, L.; Bennett, M.; Caparco, A.A.; Champion, J.A.; Bommarius, A.S.; Zaparucha, A.; Grogan, G.; Vergne-Vaxelaire, C. Biocatalytic reductive amination by native amine dehydrogenases to access short chiral al-kyl amines and amino alcohols. Front. Catal., 2021, 26, 1-14.
- Wandrey, C.; Liese, A.; Kihumbu, D. Industrial Biocatalysis: Past, Present, and Future. Org. Process Res. Dev., 2000, 4(4), 286-290. doi: 10.1021/op990101l
- Huffman, M.A.; Fryszkowska, A.; Alvizo, O.; Borra-Garske, M.; Campos, K.R.; Canada, K.A.; Devine, P.N.; Duan, D.; Forstater, J.H.; Grosser, S.T.; Halsey, H.M.; Hughes, G.J.; Jo, J.; Joyce, L.A.; Kolev, J.N.; Liang, J.; Malo-ney, K.M.; Mann, B.F.; Marshall, N.M.; McLaughlin, M.; Moore, J.C.; Murphy, G.S.; Nawrat, C.C.; Nazor, J.; Novick, S.; Patel, N.R.; Rodriguez-Granillo, A.; Robaire, S.A.; Sherer, E.C.; Truppo, M.D.; Whittaker, A.M.; Verma, D.; Xiao, L.; Xu, Y.; Yang, H. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science, 2019, 366(6470), 1255-1259. doi: 10.1126/science.aay8484 PMID: 31806816
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169. doi: 10.1093/nar/gkw1099 PMID: 27899622
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res., 2019, 47(D1), D94-D99. doi: 10.1093/nar/gky989 PMID: 30365038
- Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imler, H.J.; Sadkhin, B.; Slater, D.R. Tools and strategies for dis-covering novel enzymes and metabolic pathways. Perspect. Sci. (Neth.), 2016, 9, 24-32. doi: 10.1016/j.pisc.2016.07.001 PMID: 25900361
- Sandoval, B.A.; Hyster, T.K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol., 2020, 55, 45-51. doi: 10.1016/j.cbpa.2019.12.006 PMID: 31935627
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410. doi: 10.1016/S0022-2836(05)80360-2 PMID: 2231712
- Boratyn, G.M.; Camacho, C.; Cooper, P.S.; Coulouris, G.; Fong, A.; Ma, N.; Madden, T.L.; Matten, W.T.; McGinnis, S.D.; Merezhuk, Y.; Raytselis, Y.; Sayers, E.W.; Tao, T.; Ye, J.; Zaretskaya, I. BLAST: A more efficient re-port with usability improvements. Nucleic Acids Res., 2013, 41(W1), W29-W33. doi: 10.1093/nar/gkt282 PMID: 23609542
- Rodríguez Benítez, A.; Tweedy, S.E.; Baker Dockrey, S.A.; Lukowski, A.L.; Wymore, T.; Khare, D.; Brooks, C.L., III; Palfey, B.A.; Smith, J.L.; Narayan, A.R.H. Structural basis for selectivity in flavin-dependent monooxygen-ase-catalyzed oxidative dearomatization. ACS Catal., 2019, 9(4), 3633-3640. doi: 10.1021/acscatal.8b04575 PMID: 31346489
- Pearson, W.R. An introduction to sequence similarity ("homology") searching. Curr. Protoc. Bioinf., 2013, 42, 1-8. doi: 10.1002/0471250953.bi0301s42
- Madden, T. The BLAST Sequence Analysis Tool; George Mason University: Virginia, 2013.
- Cai, X.H.; Jaroszewski, L.; Wooley, J.; Godzik, A. Internal organization of large protein families: Relation-ship between the sequence, structure, and function-based clustering. Proteins, 2011, 79(8), 2389-2402. doi: 10.1002/prot.23049 PMID: 21671455
- Rokas, A. Phylogenetic analysis of protein sequence data using the Randomized Axelerated Maximum Likelihood (RAXML) Program. Curr. Protoc. Mol. Biol., 2011, 96, 1-14.
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28(10), 2731-2739. doi: 10.1093/molbev/msr121 PMID: 21546353
- Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol., 2013, 30(5), 1229-1235. doi: 10.1093/molbev/mst012 PMID: 23486614
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; Marugán, J.C.; Cummins, C.; Davidson, C.; Dodiya, K.; Fatima, R.; Gall, A.; Giron, C.G.; Gil, L.; Grego, T.; Haggerty, L.; Haskell, E.; Hourlier, T.; Izuogu, O.G.; Janacek, S.H.; Juettemann, T.; Kay, M.; Lavidas, I.; Le, T.; Lemos, D.; Martinez, J.G.; Maurel, T.; McDowall, M.; McMahon, A.; Mohanan, S.; Moore, B.; Nuhn, M.; Oheh, D.N.; Parker, A.; Parton, A.; Patricio, M.; Sakthivel, M.P.; Abdul Salam, A.I.; Schmitt, B.M.; Schuilenburg, H.; Sheppard, D.; Sycheva, M.; Szuba, M.; Taylor, K.; Thormann, A.; Threadgold, G.; Vullo, A.; Walts, B.; Winterbottom, A.; Zadissa, A.; Chakiachvili, M.; Flint, B.; Frankish, A.; Hunt, S.E. IIsley, G.; Kostadima, M.; Langridge, N.; Loveland, J.E.; Martin, F.J.; Morales, J.; Mudge, J.M.; Muffato, M.; Perry, E.; Ruffi-er, M.; Trevanion, S.J.; Cunningham, F.; Howe, K.L.; Zerbino, D.R.; Flicek, P. Ensembl 2020. Nucleic Acids Res., 2019, 48(D1), gkz966. doi: 10.1093/nar/gkz966 PMID: 31691826
- Jones, C.M.; Stres, B.; Rosenquist, M.; Hallin, S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol., 2008, 25(9), 1955-1966. doi: 10.1093/molbev/msn146 PMID: 18614527
- Cavalcanti, J.H.F.; Esteves-Ferreira, A.A.; Quinhones, C.G.S.; Pereira-Lima, I.A.; Nunes-Nesi, A.; Fernie, A.R.; Araújo, W.L. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol. Evol., 2014, 6(10), 2830-2848. doi: 10.1093/gbe/evu221 PMID: 25274566
- Siddiq, M.A.; Hochberg, G.K.A.; Thornton, J.W. Evolution of protein specificity: Insights from ancestral protein reconstruction. Curr. Opin. Struct. Biol., 2017, 47, 113-122. doi: 10.1016/j.sbi.2017.07.003 PMID: 28841430
- Thornton, J.W. Resurrecting ancient genes: Experimental analysis of extinct molecules. Nat. Rev. Genet., 2004, 5(5), 366-375. doi: 10.1038/nrg1324 PMID: 15143319
- Furukawa, R.; Toma, W.; Yamazaki, K.; Akanuma, S. Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. Sci. Rep., 2020, 10(1), 15493. doi: 10.1038/s41598-020-72418-4 PMID: 32968141
- OBrien, P.J.; Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol., 1999, 6(4), R91-R105. doi: 10.1016/S1074-5521(99)80033-7 PMID: 10099128
- Rodríguez Benítez, A.; Narayan, A.R.H. Frontiers in Biocatalysis: Profiling Function across Sequence Space. ACS Cent. Sci., 2019, 5(11), 1747-1749. doi: 10.1021/acscentsci.9b01112 PMID: 31807675
- Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imker, H.J.; Sadkhin, B.; Slater, D.R.; Whalen, K.L. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(8), 1019-1037. doi: 10.1016/j.bbapap.2015.04.015 PMID: 25900361
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ide-ker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
- Atkinson, H.J.; Morris, J.H.; Ferrin, T.E.; Babbitt, P.C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One, 2009, 4(2), e4345. doi: 10.1371/journal.pone.0004345 PMID: 19190775
- Fisher, B.F.; Snodgrass, H.M.; Jones, K.A.; Andorfer, M.C.; Lewis, J.C. Site-Selective CH Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Cent. Sci., 2019, 5(11), 1844-1856. doi: 10.1021/acscentsci.9b00835 PMID: 31807686
- Wages, J.M. Polymerase Chain Reaction. Encyclopedia of Analytical Science,; 2nd ed; Worsfold, P.; Townshend, A.; Poole, C., Eds.; Elsevier: Amsterdam,, 2005, pp. 243-250.
- Smalla, K.; Jechalke, S.; Top, E.M. Plasmid Detection, Characterization, and Ecology. Microbiol. Spectr., 2015, 3(1), 3.1.17. doi: 10.1128/microbiolspec.PLAS-0038-2014 PMID: 26104560
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed; Taylor and Francis: Milton Park, 2002, pp. 45-47.
- Hughes, R.A.; Ellington, A.D. Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. Cold Spring Harb. Perspect. Biol., 2017, 9(1), a023812. doi: 10.1101/cshperspect.a023812 PMID: 28049645
- Pal, S.K.; Bandyopadhyay, S.; Ray, S.S. Evolutionary computation in bioinformatics: A review. IEEE Trans. Syst. Man Cybern. C, 2006, 36(5), 601-615. doi: 10.1109/TSMCC.2005.855515
- Yang, P.; Yang, Y.H.; Zhou, B.B.; Zomaya, A.Y. A Review of Ensemble Methods in Bioinformatics. Curr. Bioinform., 2010, 5, 296-308. doi: 10.2174/157489310794072508
- Lee, S.Y.; Kim, H.U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol., 2015, 33(10), 1061-1072. doi: 10.1038/nbt.3365 PMID: 26448090
- Angov, E. Codon usage: Natures roadmap to expression and folding of proteins. Biotechnol. J., 2011, 6(6), 650-659. doi: 10.1002/biot.201000332 PMID: 21567958
- Ostrov, N.; Landon, M.; Guell, M.; Kuznetsov, G.; Teramoto, J.; Cervantes, N.; Zhou, M.; Singh, K.; Napolitano, M.G.; Moosburner, M.; Shrock, E.; Pruitt, B.W.; Conway, N.; Goodman, D.B.; Gardner, C.L.; Tyree, G.; Gonzales, A.; Wanner, B.L.; Norville, J.E.; Lajoie, M.J.; Church, G.M. Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353(6301), 819-822. doi: 10.1126/science.aaf3639 PMID: 27540174
- Guell, M. Conjugative Assembly Genome Engineering (CAGE). Methods Mol Biol. 2020;2075:399-40 , 2020, 2075, 399-40. doi: 10.1007/978-1-4939-9877-7_28
- Kudla, G.; Murray, A.W.; Tollervey, D.; Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science, 2009, 324(5924), 255-258. doi: 10.1126/science.1170160 PMID: 19359587
- Terpe, K. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60(5), 523-533. doi: 10.1007/s00253-002-1158-6 PMID: 12536251
- Nielsen, J.; Keasling, J.D. Engineering cellular metabolism. Cell, 2016, 164(6), 1185-1197. doi: 10.1016/j.cell.2016.02.004 PMID: 26967285
- Gonzalo, G.; Lavandera, I. Biocatal. Pract; de Gonzalo, G; Lavandera, I., Ed.; Wiley-VCH: Weinheim, 2021, pp. 467-485. doi: 10.1002/9783527824465.ch16
- Whittall, J.; Sutton, P.W. Applied Biocatalysis: The Chemists Enzyme Toolbox; Wiley; Hoboken: New Jersey, 2020, pp. 1-560. doi: 10.1002/9781119487043
- Mitsukura, K.; Suzuki, M.; Tada, K.; Yoshida, T.; Nagasawa, T. Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase. Org. Biomol. Chem., 2010, 8(20), 4533-4535. doi: 10.1039/C0OB00353K PMID: 20820664
- Mangas-Sanchez, J.; France, S.P.; Montgomery, S.L.; Aleku, G.A.; Man, H.; Sharma, M.; Ramsden, J.I.; Grogan, G.; Turner, N.J. Imine reductases (IREDs). Curr. Opin. Chem. Biol., 2017, 37, 19-25. doi: 10.1016/j.cbpa.2016.11.022 PMID: 28038349
- Müller, H.; Terholsen, H.; Godehard, S.P.; Badenhorst, C.P.S.; Bornscheuer, U.T. Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catal., 2021, 11(24), 14906-14915. doi: 10.1021/acscatal.1c04543
- Aleku, G.A.; France, S.P.; Man, H.; Mangas-Sanchez, J.; Montgomery, S.L.; Sharma, M.; Leipold, F.; Hussain, S.; Grogan, G.; Turner, N.J. A reductive aminase from Aspergillus oryzae. Nat. Chem., 2017, 9(10), 961-969. doi: 10.1038/nchem.2782 PMID: 28937665
- Grogan, G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS Au, 2021, 1(9), 1312-1329. doi: 10.1021/jacsau.1c00251 PMID: 34604841
- Urlacher, V.B.; Girhard, M. Cytochrome P450 Monooxygenases in Biotechnology and Synthetic Biology. Trends Biotechnol., 2019, 37(8), 882-897. doi: 10.1016/j.tibtech.2019.01.001 PMID: 30739814
- Fessner, N.D.; Badenhorst, C.P.S.; Bornscheuer, U.T. Enzyme kits to facilitate the integration of Biocatalysis in Organic Chemistry-first Aid for synthetic Chemists. ChemCatChem, 2022, 14(11), e202200156. doi: 10.1002/cctc.202200156
- He, Y.; Cox, R.J. The molecular steps of citrinin biosynthesis in fungi. Chem. Sci. (Camb.), 2016, 7(3), 2119-2127. doi: 10.1039/C5SC04027B PMID: 29899939
- Fahad, A.; Abood, A.; Fisch, K.M.; Osipow, A.; Davison, J. Avramović M.; Butts, C.P.; Piel, J.; Simp-son, T.J.; Cox, R.J. Oxidative dearomatisation: The key step of sorbicillinoid biosynthesis. Chem. Sci. (Camb.), 2014, 5(2), 523-527. doi: 10.1039/C3SC52911H PMID: 25580210
- Baker Dockrey, S.A.; Doyon, T.J.; Perkins, J.C.; Narayan, A.R.H. Whole cell biocatalysis platform for gram scale oxidative dearomatization of phenols. Chem. Biol. Drug Des., 2019, 93(6), 1207-1213. doi: 10.1111/cbdd.13443 PMID: 30485666
- France, S.P.; Hepworth, L.J.; Turner, N.J.; Flitsch, S.L. Constructing biocatalytic cascades: In vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal., 2017, 7(1), 710-724. doi: 10.1021/acscatal.6b02979
- On advances and challenges in biocatalysis. Nat. Catal., 2018, 1(9), 635-636. doi: 10.1038/s41929-018-0157-7
- Sib, A.; Gulder, T.A.M. Stereoselective total synthesis of Bisorbicillinoid natural products by enzymatic oxidative dearomatization/dimerization. Angew. Chem. Int. Ed., 2017, 56(42), 12888-12891. doi: 10.1002/anie.201705976 PMID: 28771960
- Clouthier, C.M.; Pelletier, J.N. Expanding the organic toolbox: A guide to integrating biocatalysis in synthesis. Chem. Soc. Rev., 2012, 41(4), 1585-1605. doi: 10.1039/c2cs15286j PMID: 22234546
- Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-194. doi: 10.1038/nature11117 PMID: 22575958
- Faber, K. Biotransformations in Organic Chemistry: A Textbook, 6th ed; Springer: Cham, 2011, pp. 1-423. doi: 10.1007/978-3-642-17393-6
- Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of Biocatalysis for Organic Synthesis. ACS Cent. Sci., 2021, 7(1), 55-71. doi: 10.1021/acscentsci.0c01496 PMID: 33532569
- Urlacher, V.B.; Girhard, M. Cytochrome P450 monooxygenases: An update on perspectives for synthetic application. Trends Biotechnol., 2012, 30(1), 26-36. doi: 10.1016/j.tibtech.2011.06.012 PMID: 21782265
- Schrewe, M.; Julsing, M.K.; Bühler, B.; Schmid, A. Whole-cell biocatalysis for selective and productive CO functional group introduction and modification. Chem. Soc. Rev., 2013, 42(15), 6346-6377. doi: 10.1039/c3cs60011d PMID: 23475180
- Corey, E.J.; Wipke, W.T. Computer-assisted design of complex organic syntheses. Science, 1969, 166(3902), 178-192. doi: 10.1126/science.166.3902.178 PMID: 17731475
- Ishida, S.; Terayama, K.; Kojima, R.; Takasu, K.; Okuno, Y. AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge. J. Chem. Inf. Model., 2022, 62(6), 1357-1367. doi: 10.1021/acs.jcim.1c01074 PMID: 35258953
- Zhang, X.; Lin, L.; Huang, H.; Linhardt, R.J. Chemoenzymatic Synthesis of Glycosaminoglycans. Acc. Chem. Res., 2020, 53(2), 335-346. doi: 10.1021/acs.accounts.9b00420 PMID: 31714740
- Pyser, J.B.; Chakrabarty, S.; Romero, E.O.; Narayan, A.R.H. State-of-the-Art Biocatalysis. ACS Cent. Sci., 2021, 7(7), 1105-1116. doi: 10.1021/acscentsci.1c00273 PMID: 34345663
- Jiang, Y.; Yu, Y.; Kong, M.; Mei, Y.; Yuan, L.; Huang, Z.; Kuang, K.; Wang, Z.; Yao, H.; Zou, J.; Coley, C.W.; Wei, Y. Artificial Intelligence for Retrosynthesis Prediction. Engineering, 2022, 2022, 1-8. doi: 10.1016/j.eng.2022.04.021
- Corey, E.J.; Cheng, X.M. The Logic of Chemical Reactions; Wiley Interscience: New York, 1995.
- Warren, S.; Wyatt, P. Organic Synthesis: The Disconnection Approach; Wiley: New York, 2008, pp. 1-34.
- de Souza, R.O.M.A.; Miranda, L.S.M.; Bornscheuer, U.T.; Bornscheuer, U.T. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry, 2017, 23(50), 12040-12063. doi: 10.1002/chem.201702235 PMID: 28514518
- Girvan, H.M.; Munro, A.W. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr. Opin. Chem. Biol., 2016, 31, 136-145. doi: 10.1016/j.cbpa.2016.02.018 PMID: 27015292
- Reetz, M.T.; Bocola, M.; Wang, L.W.; Sanchis, J.; Cronin, A.; Arand, M.; Zou, J.; Archelas, A.; Bottalla, A.L.; Naworyta, A.; Mowbray, S.L. Directed evolution of an enantioselective epoxide hydrolase: Uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc., 2009, 131(21), 7334-7343. doi: 10.1021/ja809673d PMID: 19469578
- Bornscheuer, U.T.; Kazlauskas, R.J. Hydrolases in Organic Synthesis Regio- and Stereoselective Biotransformations, 2nd eds; Wiley-VCH: Weinheim, 2006, pp. 396-403. doi: 10.1002/3527607544
- Bornscheuer, U.T. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev., 2002, 26(1), 73-81. doi: 10.1111/j.1574-6976.2002.tb00599.x PMID: 12007643
- DeSantis, G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z.; Tomlinson, G. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc., 2002, 124, 9024-9025. doi: 10.1021/ja0259842 PMID: 12148986
- Kazumi, J.; Haggblom, M.M.; Young, L.Y. Degradation of Monochlorinated and Nonchlorinated aromatic compounds under Iron-Reducing Conditions. Appl. Environ. Microbiol., 1996, 62(9), 3554-3556. doi: 10.1128/aem.62.9.3554-3556.1996 PMID: 16535416
- Schallmey, A.; Schallmey, M. Recent advances on halohydrin dehalogenasesfrom enzyme identification to novel biocatalytic applications. Appl. Microbiol. Biotechnol., 2016, 100(18), 7827-7839. doi: 10.1007/s00253-016-7750-y PMID: 27502414
- Bučko, M.; Gemeiner, P.; Schenkmayerová, A.; Krajčovič, T.; Rudroff, F.; Mihovilovič, M.D. Baeyer-Villiger oxidations: Biotechnological approach. Appl. Microbiol. Biotechnol., 2016, 100(15), 6585-6599. doi: 10.1007/s00253-016-7670-x PMID: 27328941
- Corey, E.J.; Link, J.O. A new process for the generation of 1,3,2-oxazaborolidines, catalysts for enantioselective synthesis. Tetrahedron Lett., 1992, 33(29), 4141-4144. doi: 10.1016/S0040-4039(00)74673-9
- Nugent, T.C. Chiral Amine Synthesis: Methods, Developments and Applications; Wiley: New York, 2010, pp. 1-520. doi: 10.1002/9783527629541
- Wang, M.X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res., 2015, 48(3), 602-611. doi: 10.1021/ar500406s PMID: 25699471
- Gotor-Fernández, V.; Gotor, V. Biocatalytic routes to chiral amines and amino acids. Curr. Opin. Drug Discov. Devel., 2009, 12(6), 784-797. PMID: 19894190
- Durchschein, K.; Hall, M.; Faber, K. Unusual reactions mediated by FMN-dependent ene- and nitro-reductases. Green Chem., 2013, 15(7), 1764-1772. doi: 10.1039/c3gc40588e
- Kohls, H.; Steffen-Munsberg, F.; Höhne, M. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr. Opin. Chem. Biol., 2014, 19, 180-192. doi: 10.1016/j.cbpa.2014.02.021 PMID: 24721252
- Edmondson, D.E.; Mattevi, A.; Binda, C.; Li, M.; Hubálek, F. Structure and mechanism of monoamine oxi-dase. Curr. Med. Chem., 2004, 11(15), 1983-1993. doi: 10.2174/0929867043364784 PMID: 15279562
- Bracco, P.; Busch, H.; von Langermann, J.; Hanefeld, U. Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases a review. Org. Biomol. Chem., 2016, 14(27), 6375-6389. doi: 10.1039/C6OB00934D PMID: 27282284
- Fuchs, M.; Farnberger, J.E.; Kroutil, W. The industrial age of biocatlytic transamination. Eur. J. Org. Chem., 2015, 2015(32), 6965-6982. doi: 10.1002/ejoc.201500852 PMID: 26726292
- Balkenhohl, F.; Ditrich, K.; Hauer, B.; Ladner, W. Optisch active Amine durch Lipase-katalysierte methox-yacetylierung. J. Prakt. Chem. Chem.-Zeitung, 1997, 339(1), 381-384. doi: 10.1002/prac.19973390166
- Chen, D.F.; Zhang, C.; Hu, Y.; Han, Z-Y.; Gong, L-Z. Catalytic enantioselective synthesis of quaternary 3,3′-indolyloxindoles by combination of Rh( II ) complexes and chiral phosphines. Org. Chem. Front., 2015, 2(8), 956-960. doi: 10.1039/C5QO00151J
- Ruinatscha, R.; Höllrigl, V.; Otto, K.; Schmid, A. Productivity of selective electroenzymatic reduction and oxidation reactions:Theoretical and practical considerations. Adv. Synth. Catal., 2006, 348(15), 2015-2026. doi: 10.1002/adsc.200600257
- Wang, Y.; San, K.Y.; Bennett, G.N. Cofactor engineering for advancing chemical biotechnology. Curr. Opin. Biotechnol., 2013, 24(6), 994-999. doi: 10.1016/j.copbio.2013.03.022 PMID: 23611567
- Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202. doi: 10.1073/pnas.0804348105 PMID: 18768813
- Lowell, A. N.; DeMars, M. D.; Slocum, S. T.; Yu, F.; Anand, K.; Chemler, J. A.; Korakavi, N.; Priessnitz, J. K.; Park, S. R.; Koch, A. A. Chemoenzymatic total synthesis and structural diversification of tylactone-based macrolide antibiotics through late-stage polyketide assembly, tailoring, and CH functionalization. J. Am.Chem. Soc. , 2017, 139, 7913-7920. doi: 10.1021/jacs.7b02875 PMID: 28525276
- Wang, J.; Zhang, Y.; Liu, H.; Shang, Y.; Zhou, L.; Wei, P.; Yin, W.-B.; Deng, Z.; Qu, X.; Zhou, Q. A biocatalytic hydroxylation enabled unified approach to C19-hydroxylated steroids. Nat. Commun., 2019, 10, 3378. doi: 10.1038/s41467-019-11344-0
- Nakamura, H.; Schultz, E. E.; Balskus, E. P. A new strategy for aromatic ring alkylation in cylindrocyclo-phane biosynthesis. Nat.Chem. Biol. , 2017, 13, 916-921. doi: 10.1038/nchembio.2421 PMID: 28671684
- Staunton, J.; Weissman, K.J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep., 2001, 18(4), 380-416. doi: 10.1039/a909079g PMID: 11548049
- Marienhagen, J.; Bott, M. Metabolic engineering of microorganisms for the synthesis of plant natural products. J. Biotechnol., 2013, 163(2), 166-178. doi: 10.1016/j.jbiotec.2012.06.001 PMID: 22687248
- Firn, R.D.; Jones, C.G. Natural products? a simple model to explain chemical diversity. Nat. Prod. Rep., 2003, 20(4), 382-391. doi: 10.1039/b208815k PMID: 12964834
- Mitsukura, K.; Suzuki, M.; Shinoda, S.; Kuramoto, T.; Yoshida, T.; Nagasawa, T. Purification and characterization of a novel (R)-imine reductase from Streptomyces sp. GF3587. Biosci. Biotechnol. Biochem., 2011, 75(9), 1778-1782. doi: 10.1271/bbb.110303 PMID: 21897027
- Adams, J.P.; Brown, M.J.B.; Diaz-Rodriguez, A.; Lloyd, R.C.; Roiban, G-D. Biocatalysis: A pharma perspective. Adv. Synth. Catal., 2019, 361(11), 2421-2432. doi: 10.1002/adsc.201900424
- Schober, M.; MacDermaid, C.; Ollis, A.A.; Chang, S.; Khan, D.; Hosford, J.; Latham, J.; Ihnken, L.A.F.; Brown, M.J.B.; Fuerst, D.; Sanganee, M.J.; Roiban, G-D. Chiral synthesis of LSD1 inhibitor GSK2879552 enabled by directed evolution of an imine reductase. Nat. Catal., 2019, 2(10), 909-915. doi: 10.1038/s41929-019-0341-4
- Kumar, R.; Karmilowicz, M.J.; Burke, D.; Burns, M.P.; Clark, L.A.; Connor, C.G.; Cordi, E.; Do, N.M.; Doyle, K.M.; Hoagland, S.; Lewis, C.A.; Mangan, D.; Martinez, C.A.; McInturff, E.L.; Meldrum, K.; Pearson, R.; Steflik, J.; Rane, A.; Weaver, J. Biocatalytic reductive amination from discovery to commercial manufacturing applied to abrocitinib JAK1 inhibitor. Nat. Catal., 2021, 4(9), 775-782. doi: 10.1038/s41929-021-00671-5
- Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852. doi: 10.1016/j.tet.2005.08.031
- Philpott, H.K.; Thomas, P.J.; Tew, D.; Fuerst, D.E.; Lovelock, S.L. A versatile biosynthetic approach to amide bond formation. Green Chem., 2018, 20(15), 3426-3431. doi: 10.1039/C8GC01697F
- Chen, Q.; Ji, C.; Song, Y.; Huang, H.; Ma, J.; Tian, X.; Ju, J. Discovery of McbB, an enzyme catalyzing the β-carboline skeleton construction in the marinacarboline biosynthetic pathway. Angew. Chem. Int. Ed., 2013, 52(38), 9980-9984. doi: 10.1002/anie.201303449 PMID: 23913777
- Ji, C.; Chen, Q.; Li, Q.; Huang, H.; Song, Y.; Ma, J.; Ju, J. Chemoenzymatic synthesis of β-carboline derivatives using McbA, a new ATP-dependent amide synthetase. Tetrahedron Lett., 2014, 55(35), 4901-4904. doi: 10.1016/j.tetlet.2014.07.004
- Petchey, M.; Cuetos, A.; Rowlinson, B.; Dannevald, S.; Frese, A.; Sutton, P.W.; Lovelock, S.; Lloyd, R.C.; Fairlamb, I.J.S.; Grogan, G. The broad aryl acid specificity of the amide bond synthetase McbA suggests potential for the biocatalytic synthesis of amides. Angew. Chem. Int. Ed., 2018, 57(36), 11584-11588. doi: 10.1002/anie.201804592 PMID: 30035356
- Petchey, M.R.; Rowlinson, B.; Lloyd, R.C.; Fairlamb, I.J.S.; Grogan, G. Biocatalytic synthesis of moclobe-mide using the amide bond synthetase McbA coupled with an ATP recycling system. ACS Catal., 2020, 10(8), 4659-4663. doi: 10.1021/acscatal.0c00929 PMID: 32337091
- Andexer, J.N.; Richter, M. Emerging enzymes for ATP regeneration in biocatalytic processes. ChemBioChem, 2015, 16(3), 380-386. doi: 10.1002/cbic.201402550 PMID: 25619338
- Lubberink, M.; Schnepel, C.; Citoler, J.; Derrington, S.R.; Finnigan, W.; Hayes, M.A.; Turner, N.J.; Flitsch, S.L. Biocatalytic monoacylation of symmetrical diamines and its application to the synthesis of pharmaceutically relevant amides. ACS Catal., 2020, 10(17), 10005-10009. doi: 10.1021/acscatal.0c02228
- Wood, A.J.L.; Weise, N.J.; Frampton, J.D.; Dunstan, M.S.; Hollas, M.A.; Derrington, S.R.; Lloyd, R.C.; Quaglia, D.; Parmeggiani, F.; Leys, D.; Turner, N.J.; Flitsch, S.L. Adenylation activity of carboxylic acid reductases enables the synthesis of amides. Angew. Chem. Int. Ed., 2017, 56(46), 14498-14501. doi: 10.1002/anie.201707918 PMID: 28940631
- Hetzler, B.E.; Trauner, D.; Lawrence, A.L. Natural product anticipation through synthesis. Nat. Rev. Chem., 2022, 6(3), 170-181. doi: 10.1038/s41570-021-00345-7 PMID: 36747591
- Novak, A.J.E.; Grigglestone, C.E.; Trauner, D. A biomimetic synthesis elucidates the origin of preuisolactone A. J. Am. Chem. Soc., 2019, 141(39), 15515-15518. doi: 10.1021/jacs.9b08892 PMID: 31518120
- Powers, Z.; Scharf, A.; Cheng, A.; Yang, F.; Himmelbauer, M.; Mitsuhashi, T.; Barra, L.; Taniguchi, Y.; Kiku-chi, T.; Fujita, M.; Abe, I.; Porco, J.A., Jr Biomimetic synthesis of meroterpenoids by dearomatization-driven polycyclization. Angew. Chem. Int. Ed., 2019, 58(45), 16141-16146. doi: 10.1002/anie.201910710 PMID: 31515901
- Gu, J.H.; Wang, W.J.; Chen, J.Z.; Liu, J.S.; Li, N.P.; Cheng, M.J.; Hu, L.J.; Li, C.C.; Ye, W.C.; Wang, L. Leptos-perols A and B, two cinnamoylphloroglucinolsesquiterpenoid hybrids from Leptospermum scoparium: Structural elucidation and biomimetic synthesis. Org. Lett., 2020, 22(5), 1796-1800. doi: 10.1021/acs.orglett.0c00109 PMID: 32091219
- Kries, H.; OConnor, S.E. Biocatalysts from alkaloid producing plants. Curr. Opin. Chem. Biol., 2016, 31, 22-30. doi: 10.1016/j.cbpa.2015.12.006 PMID: 26773811
- Zhao, J.; Méndez-Sánchez, D.; Roddan, R.; Ward, J.M.; Hailes, H.C. Norcoclaurine synthase-mediated stereoselective synthesis of 1,10 -disubstituted, spiro- and bis-tetrahydroisoquinoline alkaloids. ACS Catal., 2021, 11(1), 131-138. doi: 10.1021/acscatal.0c04704
- Schneider, P.; Henßen, B.; Paschold, B.; Chapple, B.P.; Schatton, M.; Seebeck, F.P.; Classen, T.; Pietruszka, J. Biocatalytic C3-indole methylationA useful tool for the natural-product-inspired stereoselective synthesis of pyrroloindoles. Angew. Chem. Int. Ed., 2021, 60(43), 23412-23418. doi: 10.1002/anie.202107619 PMID: 34399441
- Liao, C.; Seebeck, F.P. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat. Catal., 2019, 2(8), 696-701. doi: 10.1038/s41929-019-0300-0
- Brufani, M.; Castellano, C.; Marta, M.; Oliverio, A.; Pagella, P.G.; Pavone, F.; Pomponi, M.; Rugarli, P.L. A long-lasting cholinesterase inhibitor affecting neural and behavioral processes. Pharmacol. Biochem. Behav., 1987, 26(3), 625-629. doi: 10.1016/0091-3057(87)90176-6 PMID: 3575379
- Iijima, S.; Greig, N.H.; Garofalo, P.; Spangler, E.L.; Heller, B.; Brossi, A.; Ingram, D.K. Phenserine: A physostigmine derivative that is a long-acting inhibitor of cholinesterase and demonstrates a wide dose range for at-tenuating a scopolamine-induced learning impairment of rats in a 14-unit T-maze. Psychopharmacology (Berl.), 1993, 112(4), 415-420. doi: 10.1007/BF02244888 PMID: 7871051
- Winand, L.; Schneider, P.; Kruth, S.; Greven, N.J.; Hiller, W.; Kaiser, M.; Pietruszka, J.; Nett, M. Mutasyn-thesis of Physostigmines in Myxococcus xanthus. Org. Lett., 2021, 23(16), 6563-6567. doi: 10.1021/acs.orglett.1c02374 PMID: 34355569
- Zhao, J. Synthesis of Tetrahydroisoquinoline Alkaloids using Norcoclaurine Synthase and Phosphate Buffer mediated Pictet- Spengler Reactions., PhD thesis, University College London., 2020.
- Schneider, A.; Jegl, P.; Hauer, B. Stereoselective directed cationic cascades enabled by molecular anchoring in terpene cyclases. Angew. Chem. Int. Ed., 2021, 60(24), 13251-13256. doi: 10.1002/anie.202101228 PMID: 33769659
- Cosgrove, S.C.; Miller, G.J. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin. Drug Discov., 2022, 17(4), 355-364. doi: 10.1080/17460441.2022.2039620 PMID: 35133222
- Nyhan, W.L. Nucleotide synthesis via salvage pathway.Encyclopedia of Life Sciences; John Wiley & Sons: Hoboken, New Jersey, 2021. doi: 10.1002/9780470015902.a0001399.pub3
- Taylor, L.L.; Goldberg, F.W.; Hii, K.K.M. Asymmetric synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantioselective aza-Michael reaction. Org. Biomol. Chem., 2012, 10(22), 4424-4432. doi: 10.1039/c2ob25122a PMID: 22565504
- Englund, J.A.; Baker, C.J.; Raskino, C.; McKinney, R.E.; Petrie, B.; Fowler, M.G.; Pearson, D.; Gershon, A.; McSherry, G.D.; Abrams, E.J.; Schliozberg, J.; Sullivan, J.L.; Behrman, R.; Connor, J.C.; Hetherington, S.; Lifschitz, M.H.; McLaren, C.; Mendez, H.; Millison, K.; Moye, J.; Nozyce, M.; ODonnell, K.; Purdue, L.; Schoenfeld, D.; Scott, G.; Spector, S.A.; Wara, D.W. Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV-infected children. AIDS Clinical Trials Group (ACTG) Study 152 Team. N. Engl. J. Med., 1997, 336(24), 1704-1712. doi: 10.1056/NEJM199706123362403 PMID: 9182213
- Nawrat, C.C.; Whittaker, A.M.; Huffman, M.A.; McLaughlin, M.; Cohen, R.D.; Andreani, T.; Ding, B.; Li, H.; Weisel, M.; Tschaen, D.M. Nine-step stereoselective synthesis of islatravir from deoxyribose. Org. Lett., 2020, 22(6), 2167-2172. doi: 10.1021/acs.orglett.0c00239 PMID: 32108487
- Albers, E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â2-methylthioadenosine. IUBMB Life, 2009, 61(12), 1132-1142. doi: 10.1002/iub.278 PMID: 19946895
- Kamel, S.; Weiß, M.; Klare, H.F.T.; Mikhailopulo, I.A.; Neubauer, P.; Wagner, A. Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. Molecular Catalysis, 2018, 458, 52-59. doi: 10.1016/j.mcat.2018.07.028
- Kaspar, F.; Giessmann, R.T.; Neubauer, P.; Wagner, A.; Gimpel, M. Thermodynamic reaction control of nucleoside phosphorolysis. Adv. Synth. Catal., 2020, 362(4), 867-876. doi: 10.1002/adsc.201901230
- Alexeev, C.S.; Kulikova, I.V.; Gavryushov, S.; Tararov, V.I.; Mikhailov, S.N. Quantitative prediction of yield in transglycosylation reaction catalyzed by nucleoside phosphorylases. Adv. Synth. Catal., 2018, 360(16), 3090-3096. doi: 10.1002/adsc.201800411
- McIntosh, J.A.; Benkovics, T.; Silverman, S.M.; Huffman, M.A.; Kong, J.; Maligres, P.E.; Itoh, T.; Yang, H.; Verma, D.; Pan, W.; Ho, H.I.; Vroom, J.; Knight, A.M.; Hurtak, J.A.; Klapars, A.; Fryszkowska, A.; Morris, W.J.; Strotman, N.A.; Murphy, G.S.; Maloney, K.M.; Fier, P.S. Engineered Ribosyl-1-Kinase enables concise synthesis of molnupiravir, an anti-viral for COVID-19. ACS Cent. Sci., 2021, 7(12), 1980-1985. doi: 10.1021/acscentsci.1c00608 PMID: 34963891
- Bennett, J.W. From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics. Can. J. Bot., 1995, 73(S1), 917-924. doi: 10.1139/b95-339
- Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci., 2008, 29(10), 520-527. doi: 10.1016/j.tips.2008.07.004 PMID: 18752857
- Demiray, M.; Tang, X.; Wirth, T.; Faraldos, J.A.; Allemann, R.K. An efficient chemoenzymatic synthesis of dihydroartemisinic aldehyde. Angew. Chem. Int. Ed., 2017, 56(15), 4347-4350. doi: 10.1002/anie.201609557 PMID: 28294491
- Lévesque, F.; Seeberger, P.H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed., 2012, 51(7), 1706-1709. doi: 10.1002/anie.201107446 PMID: 22250044
- Ro, D.K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; Chang, M.C.Y.; Withers, S.T.; Shiba, Y.; Sarpong, R.; Keasling, J.D. Production of the antimalar-ial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086), 940-943. doi: 10.1038/nature04640 PMID: 16612385
- Botta, B.; Monache, G.; Misiti, D.; Vitali, A.; Zappia, G. Aryltetralin lignans: Chemistry, pharmacology and biotransformations. Curr. Med. Chem., 2001, 8(11), 1363-1381. doi: 10.2174/0929867013372292 PMID: 11562272
- Li, J.; Zhang, X.; Renata, H. Asymmetric chemoenzymatic synthesis of (-)-podophyllotoxin and related aryltetralin lignans. Angew. Chem. Int. Ed., 2019, 58(34), 11657-11660. doi: 10.1002/anie.201904102 PMID: 31241812
- DeMartino, M.P.; Chen, K.; Baran, P.S. Intermolecular enolate heterocoupling: Scope, mechanism, and application. J. Am. Chem. Soc., 2008, 130(34), 11546-11560. doi: 10.1021/ja804159y PMID: 18680297
- Chang, W.; Yang, Z.J.; Tu, Y.H.; Chien, T.C. Reaction mechanism of a nonheme iron enzyme catalyzed oxi-dative cyclization via CC bond formation. Org. Lett., 2019, 21(1), 228-232. doi: 10.1021/acs.orglett.8b03670 PMID: 30550285
- Lazzarotto, M.; Hammerer, L.; Hetmann, M.; Borg, A.; Schmermund, L.; Steiner, L.; Hartmann, P.; Belaj, F.; Kroutil, W.; Gruber, K.; Fuchs, M. Chemoenzymatic total synthesis of deoxy-, epi-, and podophyllotoxin and a biocatalytic kinetic resolution of dibenzylbutyrolactones. Angew. Chem. Int. Ed., 2019, 58(24), 8226-8230. doi: 10.1002/anie.201900926 PMID: 30920120
- Sridharan, V.; Suryavanshi, P.A.; Menéndez, J.C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev., 2011, 111(11), 7157-7259. doi: 10.1021/cr100307m PMID: 21830756
- Cosgrove, S.C.; Hussain, S.; Turner, N.J.; Marsden, S.P. Synergistic Chemo/Biocatalytic Synthesis of Alkaloidal Tetrahydroquinolines. ACS Catal., 2018, 8(6), 5570-5573. doi: 10.1021/acscatal.8b01220
- Ghislieri, D.; Green, A.P.; Pontini, M.; Willies, S.C.; Rowles, I.; Frank, A.; Grogan, G.; Turner, N.J. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J. Am. Chem. Soc., 2013, 135(29), 10863-10869. doi: 10.1021/ja4051235 PMID: 23808566
- Deng, G.; Wan, N.; Qin, L.; Cui, B.; An, M.; Han, W.; Chen, Y. Deracemization of Phenyl-Substituted 2 Methyl-1,2,3,4 Tetrahydroquinolines by a Recombinant Monoamine Oxidase from Pseudomo-nas monteilii ZMU-T01. ChemCatChem, 2018, 10(11), 2374-2377. doi: 10.1002/cctc.201701995
- Yao, P.; Cong, P.; Gong, R.; Li, J.; Li, G.; Ren, J.; Feng, J.; Lin, J.; Lau, P.C.K.; Wu, Q.; Zhu, D. Biocatalytic Route to Chiral 2-Substituted-1,2,3,4-Tetrahydroquinolines Using Cyclohexylamine Oxidase Muteins. ACS Catal., 2018, 8(3), 1648-1652. doi: 10.1021/acscatal.7b03552
- Chapman, J.; Ismail, A.; Dinu, C. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 2018, 8(6), 238. doi: 10.3390/catal8060238
- Liese, A.; Seelbach, K.; Wandrey, C. Industrial biotransformations; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2006. doi: 10.1002/3527608184
- Neto, R.N.M.; Barros Gomes, E.; Weba-Soares, L.; Dias, L.R.L.; da Silva, L.C.N.; de Miranda, R.C.M. Bio-technological Production of Statins: Metabolic Aspects and Genetic Approaches. Curr. Pharm. Biotechnol., 2019, 20(15), 1244-1259. doi: 10.2174/1389201020666190718165746 PMID: 31333127
- Walsh, G. Biopharmaceuticals: Biochemistry and biotechnology; John Wiley & Sons; Hoboken: New Jersey, 2018, pp. 1-576.
- Bartsch, T.; Becker, M.; Rolf, J.; Rosenthal, K.; Lütz, S. Biotechnological production of cyclic dinucleo-tidesChallenges and opportunities. Biotechnol. Bioeng., 2022, 119(3), 677-684. doi: 10.1002/bit.28027 PMID: 34953086
Supplementary files
