Absolute geomagnetic paleointensity at the Permian-Triassic boundary: the problem of Mesozoic Dipole Low

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We report new estimates of the intensity of the geomagnetic field strength for the Permian–Triassic boundary. Amid predominantly low virtual dipole moment values for that time in the Global Paleointensity Database, episodes of increased VDM up to 8.9 × 1022 Am2 were recorded in the sections of the trap formation of the Kuznetsk depression, which do not conform to the Mesozoic Dipole Low concept. Analysis of data on changes in the value of the virtual dipole moment during the formation of the Siberian Large Igneous Province within the framework of modern magnetostratigraphic correlations indicates a persistently weak geomagnetic field only at the initial stage, when most of its Norilsk area was formed. A change in the geomagnetic mode is noted after ~800 thousand years at the level of subchron LT1n.1r (251.2–251.1 Ma) of the General Magnetostratigraphic Scale and was recorded in the basaltic andesite lava sheets of the Kuznetsk area. Low virtual dipole moment values from this time correspond to episodes of reversals, while the overall intensity was on average only slightly lower than today. Thus, the drop in paleointensity at the very beginning of the Triassic period was not caused by a major long-term change in the geodynamo, but was short-term and related to plume activity.

全文:

受限制的访问

作者简介

D. Metelkin

Novosibirsk State University; Trofimuk Institute of Petroleum Geology and Geophysics Siberian Branch of the Russian Academy of Science

编辑信件的主要联系方式.
Email: metelkindv@ipgg.sbras.ru

Corresponding Member of the RAS

俄罗斯联邦, Novosibirsk; Novosibirsk

A. Eliseev

Novosibirsk State University; Trofimuk Institute of Petroleum Geology and Geophysics Siberian Branch of the Russian Academy of Science

Email: metelkindv@ipgg.sbras.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

V. Scherbakova

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: metelkindv@ipgg.sbras.ru

Borok Geophysical Observatory

俄罗斯联邦, Yaroslavl obl., pos. Borok

N. Mikhaltsov

Trofimuk Institute of Petroleum Geology and Geophysics Siberian Branch of the Russian Academy of Science; Novosibirsk State University

Email: metelkindv@ipgg.sbras.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

G. Zhidkov

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: metelkindv@ipgg.sbras.ru

Borok Geophysical Observatory

俄罗斯联邦, Yaroslavl obl., pos. Borok

V. Abashev

Trofimuk Institute of Petroleum Geology and Geophysics Siberian Branch of the Russian Academy of Science; Novosibirsk State University

Email: metelkindv@ipgg.sbras.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

参考

  1. Heunemann C., Krasa D., Soffel H., Gurevitch E., Bachtadse V. Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia // Earth Planet. Sci. Lett. 2004. V. 218. P. 197–213.
  2. Щербакова В. В., Щербаков В. П., Водовозов В. Ю., Сычева Н. К. Палеонапряженность на границе пермь – триас и в поздней перми // Физика Земли. 2005. № 11. С. 79–94.
  3. Щербакова В.В., Жидков Г. В., Латышев А. В., Щербаков В. П. Оценка вариаций палеонапряженности по cибирским траппам Маймеча-Котуйского и Норильского районов // Физика Земли. 2013. № 4. С. 43–60. http://doi.org/10.7868/S0002333713030149
  4. Щербакова В.В., Жидков Г. В., Щербаков В. П., Латышев А. В., Фетисова А. М. О проверке гипотезы низкого мезозойского поля на трапповых породах Сибири // Физика Земли. 2015. № 3. С. 47–67. http://doi.org/10.7868/S0002333715030151
  5. Prévot M., Derder M. E. M., McWilliams M., Thompson J. Intensity of the Earth’s magnetic field: Evidence for a Mesozoic dipole low // Earth Planet. Sci. Lett. 1990. V. 97 (1–2). P. 129–139. https://doi.org/10.1016/0012-821X9090104-6
  6. Selkin P., Tauxe L. Long-term variations in paleointensity // Philos. Trans. R. Soc. London. 2000. V. 358. P. 1065–1088. http://doi.org/10.1098/rsta.2000.0574
  7. Blanco D., Kravchinsky V. A., Valet J. P., Ali A., Potter D. K. Does the Permo-Triassic geomagnetic dipole low exist? // Phys. Earth Planet. Inter. 2012. V. 204. P. 11–21. http://doi.org/10.1016/j.pepi.2012.06.005
  8. Елисеев А. А., Метелкин Д. В., Абашев В. В., Михальцов Н. Э., Виноградов Е. В., Брагин В. Ю. Палеомагнетизм абинской серии Кузнецкого прогиба (Южная Сибирь) в связи с проблемой формирования Сибирской крупной магматической провинции // Геология и геофизика. 2024. Т. 65 (4). С. 533–551. http://doi.org/10.15372/GiG2023205
  9. Елисеев А. А., Щербакова В. В., Метелкин Д. В., Михальцов Н. Э., Жидков Г. В., Абашев В. В., Рогов А. М. Низкая напряженность геомагнитного поля на рубеже перми и триаса по результатам исследования траппов Кузнецкого прогиба (Южная Сибирь) // Геология и геофизика. 2022. Т. 63 (2). С. 230–246. http://doi.org/10.15372/GiG2021133
  10. Казанский А. Ю., Метелкин Д. В., Брагин В. Ю., Кунгурцев Л. В. Палеомагнетизм пеpмотpиаcового тpаппового комплекcа Кузнецкого пpогиба (Южная Сибиpь) // Геология и геофизика. 2005. Т. 46 (11). С. 1107–1120.
  11. Nishitani T., Kono M. Curie temperature and lattice constant of oxidized titanomagnetite // Geophys. J. R. Astron. Soc. 1983. V. 74. P. 585–600.
  12. Shcherbakova V. V., Bakhmutov V. G., Thallner D. et al. Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran // Geophysical Journal International. 2020. V. 220. Iss. 3. P. 1928–1946. http://doi.org/10.1093/gji/ggz566
  13. Latyshev A. V., Fetisova A. M., Veselovskiy R. V. Linking Siberian Traps LIP emplacement and endPermian mass extinction: evidence from magnetic stratigraphy of the Maymecha-Kotuy volcanic section // Geosciences. 2020. V. 10 (8). 295. http://doi.org/10.3390/geosciences10080295
  14. Anwar T., Hawkins L., Kravchinsky V. A., Biggin A. J., Pavlov V. E. Microwave paleointensities indicate a low paleomagnetic dipole moment at the Permo-Triassic boundary // Phys. Earth Planet. Inter. 2016. V. 260. P. 62–73. http://doi.org/10.1016/j.pepi.2016.09.007
  15. Glatzmaier G. A., Roberts P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal // Nature. 1995. V. 377. P. 203–209.
  16. Добpецов Н. Л. Геологичеcкие cледcтвия теpмоxимичеcкой модели плюмов // Геология и геофизика. 2008. Т. 49. № 7. C. 587–604
  17. Courtillot V., Olson P. Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events // Earth Planet. Sci. Lett. 2007. V. 260. P. 495–504. http://doi.org/10.1016/j.epsl.2007.06.003
  18. Добрецов Н. Л. Глобальная геодинамическая эволюция Земли и глобальные геодинамические модели // Геология и геофизика. 2010. Т. 51 (6). С. 761–784.
  19. Диденко А. Н. О возможной причине квазипериодических колебаний частоты геомагнитных инверсий и величины S 87 r/ S 86 r в морских карбонатных породах в фанерозое // Геология и геофизика. 2011. Т. 52. № 12. С. 1945–1956.
  20. Добрецов Н. Л., Метелкин Д. В., Василевский А. Н. Характерные свойства магнитного и гравитационного полей Земли, взаимосвязанные с глобальной и региональной тектоникой // Геология и геофизика. 2021. Т. 62. № 1. С. 10–30. http://doi.org/10.15372/GiG2020181

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geographical position and geological structure of the Kuznetsk area of ​​the Siberian large igneous province, simplified according to [8]. Legend for the schematic diagram of the Siberian large igneous province: 1 - exposed traps; 2 - buried traps; 3 - boundary of the igneous province; 4 - large graben-rift structures. Legend for the geological structure diagram of the Kuznetsk area and the section of the trap complex: 1 - Quaternary alluvial deposits; 2 - Lower Jurassic (a) and Middle Jurassic (b) coal-bearing molasse; 3-5 - stratigraphic subdivisions of the Lower Triassic sedimentary-volcanogenic trap section: 3 - Maltsevskaya Formation; 4 - Sosnovskaya Formation; 5 - Yaminskaya Formation; 6 – basalt and basaltic andesite covers in the section of the trap complex; 7 – Lower-Middle Permian coal-bearing molasse; 8 – faults. The conventional designations of sampling points on the diagram and section correspond to Fig. 3.

下载 (816KB)
3. Fig. 2. Micrographs of a representative sample on a large scale and a fragment magnified by 10 times indicating the mapping of plagioclase (Pl), clinopyroxene (Cpx), titanomagnetite (Ti-Mgt) and the results of experiments on studying paleointensity for III (top) and V (bottom) nappes, from left to right the following are characteristic: graphs of the change in saturation magnetization Ms as a function of temperature during successive heatings (the corresponding temperature ranges are shown in different colors); orthogonal Zijderveld diagrams in sample coordinates based on the results of stepwise thermal demagnetization; Arai-Nagata diagrams (filled and empty points are experimental values ​​included and not included in the approximation interval, the red straight line is the trend line, triangles are test points); thermomagnetic curves NRM and TRM for assessing paleointensity using the Wilson–Burakov method and a graph of the dependence NRM(T) and TRM(T), explanations in the text.

下载 (484KB)
4. Fig. 3. Virtual dipole moment values ​​(World Paleointensity Database data) for the interval of formation of the Siberian large igneous province. Magnetochronological reference according to the correlation schemes proposed in [13, 8], with a simplification about the uniformity of formation of the volcanic section. Trend lines (solid black lines) are calculated based on the average values ​​for intervals of 100 and 30 thousand years (black dots), the dashed line shows the inferred trend lines for intervals with missing factual data. The Norilsk area suites are designated by letters: Iv – Ivakinskaya, Sv – Syverminskaya, Gd – Gudchikha, Kk – Khakanchanskaya, Tk – Tuklonskaya, Nd – Nadezhdinskaya, Mr – Morongovskaya, Mk – Mokulaevskaya, Hr – Khakanchanskaya, Km – Kumginskaya, Kmx – Samoyedskaya; Maimecha-Kotuy area: On – Onkuchak, Tv – Tyvankit, Dl – Delkan, Mm – Maimechin, Kuznetsk area: Ml – Maltsev, Ss – Sosnovskaya, Jam – Yamin. Legend: VDM values ​​published in: 1 – [1]; 2 – [2]; 3 – [3]; 4 –[4]; 5 – [7]; 6 – [9]; 7–10 – this work: 7 – cover II, 8 – cover III, 9 – cover IV, 10 – cover V; 11 – [14].

下载 (296KB)

版权所有 © Russian Academy of Sciences, 2024