COUNTABLE MODELS OF COMPLETE ORDERED THEORIES
- 作者: Zambarnaya T.S.1, Baizhanov B.1,2
 - 
							隶属关系: 
							
- Institute of Mathematics and Mathematical Modeling
 - Suleyman Demirel University
 
 - 期: 卷 513 (2023)
 - 页面: 5-8
 - 栏目: MATHEMATICS
 - URL: https://clinpractice.ru/2686-9543/article/view/647865
 - DOI: https://doi.org/10.31857/S268695432370025X
 - EDN: https://elibrary.ru/CMFRBD
 - ID: 647865
 
如何引用文章
详细
The article consists of observations regarding complete theories of countable signatures and their countable models. We provide a construction of a countable linearly ordered theory which has the same number of countable non-isomorphic models as the given countable, not necessarily linearly ordered, theory.
作者简介
T. Zambarnaya
Institute of Mathematics and Mathematical Modeling
							编辑信件的主要联系方式.
							Email: zambarnaya@math.kz
				                					                																			                												                								Kazakhstan, Almaty						
B. Baizhanov
Institute of Mathematics and Mathematical Modeling; Suleyman Demirel University
														Email: zambarnaya@math.kz
				                					                																			                												                								Kazakhstan, Almaty; Kazakhstan, Kaskelen						
参考
- Morley M. The number of countable models // The Journal of Symbolic Logic. 1970. V. 35. №1. P. 14–18.
 - Rubin M. Theories of linear order // Israel Journal of Mathematics. 1974. V. 17. P. 392–443.
 - Mayer L. Vaught’s conjecture for o-minimal theories // Journal of Symbolic Logic. 1988. V. 53. № 1. P. 146–159.
 - Alibek A., Baizhanov B.S. Examples of countable models of a weakly o-minimal theory // Int. J. Math. Phys. 2012. V. 3. № 2. P. 1–8.
 - Kulpeshov B.Sh., Sudoplatov S.V. Vaught’s conjecture for quite o-minimal theories // Annals of Pure and Applied Logic. 2017. V. 168. № 1. P. 129–149.
 - Alibek A., Baizhanov B.S., Kulpeshov B.Sh., Zambarnaya T.S. Vaught’s conjecture for weakly o-minimal theories of convexity rank 1 // Annals of Pure and Applied Logic. 2018. V. 169. № 11. P. 1190–1209.
 - Moconja S., Tanovic P. Stationarily ordered types and the number of countable models // Annals of Pure and Applied Logic. 2019. V. 171. № 3. P. 102765.
 - Kulpeshov B.Sh. Vaught’s conjecture for weakly o-minimal theories of finite convexity rank // Izvestiya: Mathematics. 2020. V. 84. № 2. P. 324–347.
 - Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. М.: МЦНМО, 2002.
 
补充文件
				
			
						
						
						
						
					


