THE METHOD OF FICTITIOUS EXTREMA LOCALIZATION IN THE PROBLEM OF GLOBAL OPTIMIZATION

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of finding the global extremum of a non-negative function on a positive parallelepiped in n-dimensional Euclidean space is considered. A method of fictitious extrema localization in a bounded area near the origin is proposed, which allows to separate the global extremum point from fictitious extrema by discarding it at a significant distance from the localization set of fictitious minima. At the same time, due to the choice of the starting point in the gradient descent method, it is possible to justify the convergence of the iterative sequence to the global extremum of the minimized function.

Авторлар туралы

Yu. Evtushenko

Federal Research Center “Informatics and Control” of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: yuri-evtushenko@yandex.ru
Russian Federation, Moscow; Russian Federation, Dolgoprudny, Moscow olast

A. Tret’yakov

Federal Research Center “Informatics and Control” of the Russian Academy of Sciences; Siedlce University, Faculty of Sciences

Хат алмасуға жауапты Автор.
Email: prof.tretyakov@gmail.com
Russian Federation, Moscow; Poland, Siedlce

Әдебиет тізімі

  1. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982.
  2. Карманов В.Г. Математическое программирование. М.: Наука, 1986.
  3. Grishagin V., Israfilov R., Sergeyev Y. Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes // Applied Mathematics and Computation. 2018. V. 318. P. 270–280.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Ю.Г. Евтушенко, А.А. Третьяков, 2023