Digital images analysis of macroscopic charcoal particles from lake and peat sediments for palaeogeographic reconstruction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The analysis of macroscopic charcoal particles in sediments of different genesis is one of the most common approaches to reconstruct the past fire regimes. The method requires a great deal of time and effort on the part of the researcher. It implies continuous sampling of the sediment core and counting of all charcoal particles with linear dimensions greater than 125 µm in a sample of fixed volume. The purpose of this paper is to present an automatic method that we have developed for the calculation of macroscopic charcoal particles using image analysis. This method is easily reproducible, not technologically demanding, and fast. It allows us to obtain additional palaeoecological information based on the study of geometric characteristics and particle area. A comparison of the results obtained by a standard manual count of the charcoal particles in the test samples and the number of particles determined from the image showed that the method was accurate enough for palaeogeographic reconstructions: Spearman correlation coefficient R = 0.85, R2 = 0.71, MAPE = 31.58% (the mean absolute percentage error), determined particle area comparison revealed R = 0.99, R2 = 0.98, MAPE = 21.45%. The results of macroscopic charcoal analysis of the peat core from Pobochnoye peatland (Buzuluksky Bor National Park, Orenburg region) are presented to demonstrate the capabilities of the developed method. One thousand samples collected from 10 m of peat sediments accumulated over 11.4 ka years were analyzed, and 6,000 images were processed. The results of the analysis include determined charcoal accumulation rates, fire episodes and inter-fire intervals, as well as classification of charcoal particles into grass and wood morphotypes. The variation in charcoal particle size was also estimated for each fire episode, providing additional palaeoecological information about Holocene fires.

Texto integral

Acesso é fechado

Sobre autores

A. Shatunov

Institute of Geography, Russian Academy of Sciences

Autor responsável pela correspondência
Email: toxavilli@yandex.ru
Rússia, Moscow

N. Mazei

Lomonosov Moscow State University, Faculty of Geography

Email: natashamazei@mail.ru
Rússia, Moscow

E. Novenko

Institute of Geography, Russian Academy of Sciences

Email: lenanov@mail.ru
Rússia, Moscow

Bibliografia

  1. Baddeley A., Turner R. (2005) spatstat: An R Package for Analyzing Spatial Point Patterns. J. of Stat. Software. Vol. 12. No. 6. P. 1–42. https://doi.org/10.18637/jss.v012.i06
  2. Blaauw M., Christen J.A. (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. Vol. 6. No. 3. P. 457–474. https://doi.org/10.1214/11-BA618
  3. Bond W.J., Woodward F.I., Midgley G.F. (2005) The global distribution of ecosystems in a world without fire. New Phytol. Vol. 165. No. 2. P. 525–537. http://dx.doi.org/10.1111/j.1469-8137.2004.01252.x
  4. Bowman D.M.J.S., Balch J.K., Artaxo P. et al. (2009) Fire in the Earth System. Science. Vol. 324. P. 481–484. https://doi.org/10.1126/science.1163886, 2009
  5. Calder W.J., Parker D., Stopka C.J. et al. (2015) Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. The Proceedings of the National Academy of Sciences USA. Vol. 112. P. 13261–13266. https://doi.org/10.1073/pnas.1500796112
  6. Chibilev A.A. Velmovsky P.V., Kin N.O. et al. (2008) Buzulukskii bor (Buzulukskiy bor). Yekaterinburg: Ural’skoe otdelenie RAN (Publ.). 186 p. (in Russ).
  7. Conedera M., Tinner W., Neff C. et al. (2009) Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. Vol. 28. P. 555–576. https://doi.org/10.1016/j.quascirev.2008.11.005
  8. Connor S., Ross S., Sobotkova A. et al. (2013) Environmental conditions in the SE Balkans since the Last Glacial Maximum and their influence on the spread of agriculture into Europe. Quat. Sci. Rev. Vol. 68. P. 200–215. https://doi.org/10.1016/j.quascirev.2013.02.011
  9. Dellasala D., Hanson C. (2015) The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix. NY: Elsevier Inc. 409 p.
  10. Ferreira T., Rasband W. ImageJ User Guide. ImageJ Wiki. [Electronic data]. Access way: https://imagej.net/ij/docs/guide/ (Access date: 24.04.2024).
  11. Feurdean A. (2021) Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga. Biogeosciences. Vol. 18. P. 3805–3821. https://doi.org/10.5194/bg-18-3805-2021
  12. Feurdean A., Vachula R.S., Hanganu D. et al. (2023) Charcoal morphologies and morphometrics of a Eurasian grass-dominated system for robust interpretation of past fuel and fire type. Biogeosciences. Vol. 20. P. 5069–5085. https://doi.org/10.5194/bg-20-5069-2023
  13. Finsinger W., Bonnici I. Tapas: An R package to perform trend and peaks analysis. Github.com. [Electronic data]. Access way: https://github.com/wfinsinger/tapas (Аccess date: 24.04.2024).
  14. Finsinger W., Morales-Molino C., Gałka M. et al. (2017) Holocene vegetation and fire dynamics at Crveni Potok, a small mire in the Dinaric Alps (Tara National Park, Serbia). Quat. Sci. Rev. Vol. 167. P. 63–77. https://doi.org/10.1016/j.quascirev.2017.04.032
  15. Fletcher M., Benson A., Heijnis H. et al. (2015) Changes in biomass burning mark the onset of a ENSO-influenced climate regime at 42 S in southwest Tasmania, Australi. Quat. Sci. Rev. Vol. 122. P. 222–232. https://doi.org/10.1016/j.quascirev.2015.05.002
  16. Furyaev V.В. (1996) Rol’ pozharov v protsesse lesoobrazovaniya (The role of fires in the process of forest formation). Novosibirsk: Nauka. Sibirskoe otdelenie (Publ.). 253 p. (in Russ).
  17. Halsall K.M., Ellingsen V.M., Asplund J. et al. (2018) Fossil charcoal quantification using manual and image analysis approaches. The Holocene. Vol. 28. Iss. 8. P. 1345–1353. https://doi.org/10.1177/0959683618771488
  18. Higuera P. (2009) CharAnalysis 0.9: Diagnostic and Analytical Tools for Sediment Charcoal Analysis (User´s Guide). Bozeman, MT: Montana State Univ. 32 p.
  19. Klimentyev A.I. (2010) Buzulukskii bor: pochvy, landshafty i faktory geograficheskoi sredy (Buzulukskiy boron: soils, landscapes and factors of geographical environment). Ekaterinburg: Typography “Ural Centre for Academic Service” (Publ.). 401 p. (in Russ).
  20. Kremenetski C.V., Boettger T., Junge F.W. et al. (1999) Late- and postglacial environment of the Buzuluk area, middle Volga region, Russia. Quat. Sci. Rev. Vol. 18. P. 1185–1203. https://doi.org/10.1016/S0277-3791(98)00074-2
  21. Kupriyanov D.A., Novenko E.Yu. (2021) Reconstruction of the history of forest fires in the Southern part of the Mordovian Reserve in the Holocene according to the data of analysis of macroscopic coal particles in peat. Trudy Mordovskogo gosudarstvennogo prirodnogo zapovednika im. P.G. Smidovicha. No. 26: 176–192 (in Russ.).
  22. Lestienne M., Hely C., Curt T. et al. (2020) Combining the Monthly Drought Code and Paleoecological Data to Assess Holocene Climate Impact on Mediterranean Fire Regime. Fire. Vol. 3. Iss. 2. No. 8. P. 1–22. https://doi.org/10.3390/fire3020008
  23. Lesven J., Druguet D.M., Borne R. et al. (2022) Testing a new automated macrocharcoal detection method applied to a transect of lacustrine sediment cores in eastern Canada. Quat. Sci. Rev. Vol. 295. P. 1–15. https://doi.org/10.1016/j.quascirev.2022.107780
  24. Leys B., Carcaillet C., Dezileau L. et al. (2013) A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica. Quat. Res. Vol. 79. P. 337–349. https://doi.org/10.1016/j.yqres.2013.01.003
  25. Luelmo-Lautenschlaeger R., Blarquez O., Perez-Diaz S. et al. (2019) The Iberian Peninsula’s Burning Heart–Long-Term Fire History in the Toledo Mountains (Central Spain). Fire. Vol. 2. Iss. 4. No. 54. P. 1–23. https://doi.org/10.3390/fire2040054
  26. Mooney S., Tinner W. (2011) The analysis of charcoal in peat and organic sediments. Mires and Peat. Vol. 7. P. 1–18.
  27. Müller K., Wickham H. Tibble: Simple Data Frames [Electronic data]. Access way: https://github.com/tidyverse/tibble/ (Access date: 24.04.2024).
  28. Munoz A.A., Gonzalez M.E., Schneider-Valenzuela I. et al. (2023) Multiproxy Approach to Reconstruct the Fire History of Araucaria araucana Forests in the Nahuelbuta Coastal Range, Chile. Forests. Vol. 14. P. 1–26. https://doi.org/10.3390/f14061082
  29. Mustaphi C.J., Pisaric M.F.J. (2018) Forest vegetation change and disturbance interactions over the past 7500 years at Sasquatch Lake, Columbia Mountains, western Canada. Quat. Int. Vol. 488. P. 95–106. https://doi.org/10.1016/j.quaint.2017.03.045
  30. Nesterova M.I., Ryabogina N.E. (2022) Dynamics of forest fires in the vicinity of Tyumen during 9000 years. In: Dinamika ekosistem v golotsene: Sbornik statei po materialam VI vserossiiskoi nauchnoi konferentsii. Sankt-Peterburg: Rossiiskii gosudarstvennyi pedagogicheskii universitet im. A.I. Gertsena (Publ.). P. 495–499 (in Russ).
  31. Nigamatzyanova G.R., Frolova L.A., Nigmatullin N.M. et al. (2023) Vegetation and climate changes in the Southern Urals in the Late Glacial and Holocene derived from pollen record of Lake Bolshoe Miassovo. Geomorfologiya i Paleogeografiya. Vol. 54. No. 4. P. 179–194 (in Russ). https://doi.org/10.31857/S2949178923040060
  32. Novenko E.Yu. (2021) Landscape and climate dynamics in central and eastern Europe in the Holocene – forecast estimates of changes in the natural environment. Geomorfologiya. No. 3. P. 24–47 (in Russ). https://doi.org/10.31857/S0435428121030093
  33. Otsu N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. Vol. 9. Iss. 1. P. 62–66. https://doi.org/10.1109/TSMC.1979.4310076
  34. Pupysheva M.A., Blyakharchuk T.A. (2024) Reconstruction of the Holocene palaeofire history in the middle taiga subzone of Western Siberia based on the data of macroangular analysis of lake sediments. Geosfernye issledovaniya. No. 1. P. 135–151 (in Russ). https://doi.org/10.17223/25421379/30/8
  35. Rehn E., Rehn A., Possemiers A. (2019) Fossil charcoal particle identification and classification by two convolutional neural networks. Quat. Sci. Rev. Vol. 226. P. 1–6. https://doi.org/10.1016/j.quascirev.2019.106038
  36. Rogozin D.Y., Burdin L.A., Bolobanshchikova G.N. (2023) Coal macroparticles in the upper layers of lake bottom sediments of the North Minusinsk Basin (southern Siberia) as an indicator of fire dynamics in the surrounding area. Zhurnal Sibirskogo federal’nogo universiteta. Seriya: Biologiya. No. 2. P. 252–266 (in Russ).
  37. Rudaya N., Xianyong C., Snezhana Z. et al. (2020) Postglacial history of the Steppe Altai: Climate, fire and plant diversity. Quat. Sci. Rev. Vol. 249. P. 1–20. https://doi.org/10.1016/j.quascirev.2020.106616
  38. Sannikov S.N. Goldammer J.G. (1996) Fire ecology of pine forests of Northern Eurasia. In: Fire in ecosystems of boreal Eurasia. KLUWER: Springer Science+Business Media B.V. Formerly Kluwer Academic Publishers B.V. P. 151–167.
  39. Sannikov S.N.N., Sannikova N.S., Petrova I.V. (2012) Ocherki po teorii lesnoi populyatsionnoi biologii (Essays on the theory of forest population biology). Ekaterinburg: UrO RAN. Bot. sad. (Publ.). 277 p. (in Russ.).
  40. Sedykh V.N. (2009) Lesoobrazovatel’nyi protsess (Forest formation process). Novosibirsk: Nauka. Sibirskoe otdelenie (Publ.). 164 p. (in Russ.).
  41. Słowiński M., Lamentowicz M., Łuców D. et al. (2019) Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manage. Vol. 236. Р. 755–768. https://doi.org/10.1016/j.jenvman.2019.02.002
  42. Słowiński M., Obremska M., Avirmed D. et al. (2022) Fires, Vegetation, and Human–The History of Critical Transitions During the Last 1000 Years in Northeastern Mongolia. Sci. Total Environ. Vol. 383. Part 1. 155660. https://doi.org/10.2139/ssrn.4043617
  43. Snitker G. (2020) The Charcoal Quantification Tool (CharTool): A Suite of Open-source Tools for Quantifying Charcoal Fragments and Sediment Properties in Archaeological and Paleoecological Analysis. Ethnobiology Letters. Vol. 11. P. 103–115. https://doi.org/10.14237/ebl.11.1.2020.1653
  44. Sukhomilova V.V. (2013) Pozhary v prirode kak biosfernoe yavlenie (Fires in nature as a biospheric phenomenon). Birobidzhan: Amursk. gos. un-t. Birobidzhanskiy filial (Publ.). 250 p. (in Russ.).
  45. Vachula R.S., Russell J.M., Huang Y. et al. (2018) Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 508. P. 166–175. https://doi.org/10.1016/j.palaeo.2018.07.032
  46. Vachula R.S., Sae-Lim J., Li R. (2021) A critical appraisal of charcoal morphometry as a paleofire fuel type proxy. Quat. Sci. Rev. Vol. 262. P. 1–11. https://doi.org/10.1016/j.quascirev.2021.106979
  47. Vygodsky M.Y. (1975) Handbook of elementary mathematics. Moscow: Physmatlit (Publ.). 412 p.
  48. Wickham H., François R., Henry L. et al. Dplyr: A Grammar of Data Manipulation – R package version 1.1.4. [Electronic data]. Access way: https://github.com/tidyverse/dplyr/ (Access date: 24.04.2024).
  49. Wijffels J., von Gioi G. (2017) Image ContourDetector: image.ContourDetector: an R package to detect contour lines in images – R package version 0.1.0. [Electronic data]. Access way: https://github.com/bnosac/image/ (Access date: 24.04.2024).
  50. Zabel N.A., Soliguin A.M., Wiklund J.A et al. (2022) Paleolimnological assessment of past hydro-ecological variation at a shallow hardwater lake in the Athabasca Oil Sands Region before potential onset of industrial development. J. of Hydrology: Region. Studies. Vol. 39. 100977. https://doi.org/10.1016/j.ejrh.2021.100977
  51. Zeileis A., Grothendieck G. (2005) Zoo: S3 Infrastructure for Regular and Irregular Time Series. J. of Stat. Software. Vol. 14. Iss. 6. P. 1–27. https://doi.org/10.18637/jss.v014.i06

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. An empty Petri dish divided into 6 segments prepared for image analysis (a), a constructed press (б) and an example of the resulting image of a segment magnified 7.5 times (в).

Baixar (678KB)
3. Fig.2. The intensity distribution of pixels in the image prepared for counting macroscopic charcoal particles in sediment samples for red, green and blue colors. The histogram shows the areas of intersection between blue and green in blue, green and red in yellow, and blue, green and red in purple. The dark arrow marks the minimum between the two histogram maxima, determining whether a pixel belongs to charcoal or background. The peak on the left is predominantly charcoal, the peak on the right is background.

Baixar (216KB)
4. Fig. 3. A diagram of the distribution of pixels in the image of the test samples in relation to the background and the charcoal particles. 1 – indicates the background; 2 – charcoal.

Baixar (346KB)
5. Fig. 4. Binarization of the image of macroscopic charcoal particles: (a) – prepared for binarization, (б) – the result of binarization.

Baixar (359KB)
6. Fig. 5. Comparison of the number of macroscopic charcoal particles in test samples: without plant residues (a) and with plant residues (б), counted by the standard method (1) and by image (2).

Baixar (615KB)
7. Fig. 6. Macroscopic charcoal accumulation rate in the peat core of the Pobochnoye peatland (a) and the inter–fire interval (б). In the upper graph, the interpolated CHAR values are indicated by a grey line, the background CHAR values are indicated by a red line, and red ‘+’ represent fire episodes.

Baixar (409KB)
8. Fig. 7. The proportion of grass (1) and wood (2) charcoal in the peat core of the Pobochnoye peatland. The values are smoothed using the moving average with 10 points.

Baixar (791KB)
9. Fig. 8. Box plots of diameters of macroscopic charcoal particles from the peat core of the Pobochnoye peatland in relation to identified fire episodes. The dark line inside the box shows the median, the box is one standard deviation, the whiskers are 2 standard deviations, and the dots are outliers.

Baixar (905KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025