Determination of the economic efficiency of use thermal insulation binary mixtures in road pavements
- 作者: Galkin A.F.1, Plotnikov N.A.1, Pankov V.Y.2
-
隶属关系:
- Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences
- North-Eastern Federal University in Yakutsk
- 期: 编号 5 (2025)
- 页面: 36-42
- 栏目: Материалы для дорожного строительства
- URL: https://clinpractice.ru/0585-430X/article/view/684056
- DOI: https://doi.org/10.31659/0585-430X-2025-835-5-36-42
- ID: 684056
如何引用文章
详细
An effective way of reducing the consequences of negative cryogenic processes on linear structures such as landing strips, automobile and rail roads in the permafrost zone, is to reduce their interaction with frozen soils through application of thermal insulation materials. The high cost of thermal insulation is the main disadvantage of this method of controlling the thermal regime of the foundations. A possible way to decrease the construction costs is to apply binary mixtures as an insulating layer. Binary mixtures comprise a structural thermal accumulating binder material, such as sand or gravel, and a thermal insulating filler material (keramzite, azerite, expanded polystyrene pellets, crushed glass). The aim of this research is to determine the area where it is economically efficient to use binary mixtures as thermal insulation in construction of roads in the permafrost zone. The influence of the thermal physical properties of the binder and filler materials on economic efficiency was considered. Two dimensionless variables were derived: a thermal physical variable describing the ratio of the thermal conductivity coefficients of the filler and the binder, and an economic variable, the ratio of cost of a unit of volume of the filler to the binder. A dimensionless objective function allowing to determine the ratio of prices of the filler and binder when it is efficient to use the binary mixture, as opposed to a single material with similar properties, was created. Equations describing the quantitative relationships of the filler concentration with the thermal physical and economic variables to determine the boundary of economic efficiency for binary mixtures with various thermal physical properties were derived. The analysis of the objective function shows that there is a large area where it is economically advantageous to use binary mixtures and they can be recommended as a substitute for single material thermal insulation in road construction. The area of expedient use of binary mixtures depending on prices was visualized in a 3D chart.
全文:

作者简介
A. Galkin
Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences
Email: afgalkkin@mail.ru
Doctor of Sciences (Engineering),
俄罗斯联邦, 36, Merzlotnaya Street, Yakutsk, 677010N. Plotnikov
Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences
Email: plotnikov-nikolay96@mail.ru
Engineer, Graduate Student
俄罗斯联邦, 36, Merzlotnaya Street, Yakutsk, 677010V. Pankov
North-Eastern Federal University in Yakutsk
编辑信件的主要联系方式.
Email: pankov1956@gmail.ru
Candidate of Sciences (Geology and Mineralogy), Associate Professor
俄罗斯联邦, 58, Belinskogo Street, Yakutsk, 677027参考
- Wu Q.B., Li M.Y., Liu Y Z. Thermal interaction of permafrost and the Qinghai-Tibet Railway. Journal of Cold Regions Engineering. 2010. Vol. 24, Iss. 4, pp. 112–125. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000016
- Galkin A.F., Kurta I.V., Pankov V.Y. Use of burnt rocks in underground laying of cable communication lines in the cryolithozone. Izvestiya of Tomsk Polytechnic University. Engineering of Georesources. 2020. Vol. 331. No. 12, pp. 131–137. (In Russian). EDN: LESDKA. https://doi.org/10.18799/24131830/2020/12/2946
- Mu Y.H., Ma W., Wu Q.B., et al. Thermal regime of conventional embankments along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology. 2012. Vol. 70, pp. 123–131. https://doi.org/10.1016/j.coldregions.2011.08.005
- Wang S J, Chen J B, Zhang J Z, et al. Development of highway constructing technology in the permafrost region on the Qinghai Tibet Plateau. Science in China Series E: Technological Sciences. 2009. Vol. 52, pp. 497–506. EDN: BVIAUU. https://doi.org/10.1007/s11431-008-0355-7
- Pankov V.Yu. The problem of mechanical loads on pavement of roads in the cryolithic zone. E3S Web of Conferences. 2022. Vol. 363. 01039. EDN: SSRMJT. https://doi.org/10.1051/e3sconf/202236301039
- Varlamov S.P., Zhirkov A.F., Nakhodkin D.A. Temperature regime of soils during disturbance of cover in modern climatic conditions of Central Yakutia. Nauka i Obrazovanie. 2017. No. 4 (88), pp. 65–71. (In Russian). EDN: YUYWZM
- Galkin A.F., Plotnikov N.A., Pankov V.Yu. Effect of air temperature on the depth of thawing of the road base. Arktika: Ekologiya i Ekonomika. 2023. Vol. 13. No. 4 (52), pp. 529–535. (In Russian). EDN: NLLQGS. https://doi.org/10.25283/2223-4594-2023-4-529-535
- Yuncheng Mao, Guoyu Li, Wei Ma, Yanhu Mu, Fei Wang, Jian Miao, Danze Wu. Field observation of permafrost degradation under Mo’he airport, Northeastern China from 2007 to 2016. Cold Regions Science and Technology. 2019. Vol. 161, pp. 43–50. https://doi.org/10.1016/j.coldregions.2019.03.004
- Kondratiev V.G., Kondratiev S.V. How to protect the federal highway «Amur» Chita – Khabarovsk from dangerous engineering-geocryological processes and phenomena. Inzhenernaya Geologiya. 2013. No. 5, pp. 40–47. (In Russian). EDN: RUXFKT
- Shapran V.V., Fazilova Z.T. Factors influencing the development of longitudinal profile deformations of the roadbed in the permafrost zone. Mir Transporta. 2020. Vol. 18. No. 2, pp. 82–101. (In Russian). EDN: WZNPPP https://doi.org/10.30932/1992-3252-2020-18-82-101
- Stanilovskaya Yu.V., Merzlyakov V.P., Sergeev D.O., Khimenkov A.N. Assessment of the hazard of polygonal-wedge ice for linear structures. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2014. No. 4, pp. 367–378. (In Russian). EDN: SJSXMJ
- Bessonov I.V., Zhukov A.D., Bobrova E.Yu., Govryakov I.S., Gorbunova E.A. Analysis of design solutions depending on the type of insulating materials in road surfaces in permafrost soils. Transportnoye Stroitel’stvo. 2022. No. 1, pp. 14–17. EDN: UNQHNE
- Galkin A., Pankov V.Y. Thermal protection of roads in the permafrost zone. Journal of Applied Engineering Science. 2022. Vol. 20. No. 2, pp. 395–399. EDN: NLYVAN. https://doi.org/10.5937/jaes0-34379
- Galkin A.F., Kurta I.V., Pankov V.Yu., Potapov A.V. Evaluation of the efficiency of using a layered thermal protection structure in road construction in the permafrost zone. Energobezopasnost’ i Energosberezheniye. 2020. No. 4, pp. 24–28. (In Russian). EDN: WYVNYF. https://doi.org/10.18635/2071-2219-2020-4-24-28
- Ma W., Feng G., Wu Q., et al. Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai Tibet Railway. Cold Regions Science and Technology. 2008. Vol. 53. Iss. 3, pp. 259–270. https://doi.org/10.1016/j.coldregions.2007.08.001
- Galkin A.F., Plotnikov N.A. Selection of building materials for the thermal insulation layer of road clothing. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 57–64. EDN: KKKYBQ. (In Russian). https://doi.org/10.31659/0585-430X-2023-817-9-57-64
- Mu Y., Ma W., Wu Q., et al. Cooling processes and effects of crushed rock embankment along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology. 2012. Vol. 78, pp. 107–114. https://doi.org/10.1016/j.coldregions.2012.01.014
- Ashpiz E.S., Khrustalev L.N., Vedernikova M.A., Emelyanova L.V. Use of synthetic thermal insulators to maintain permafrost conditions at the base of a railway embankment. Kriosfera Zemli. 2008. Vol. 12. No. 2, pp. 84–89. (In Russian). EDN: JTGMXF
- Galkin A.F., Plotnikov N.A., Pankov V.Y. Selection of Construction Materials for a Thermal Insulation Layer of a Road. In: Feng, G. (eds) Proceedings of the 10th International Conference on Civil Engineering. ICCE 2023. Lecture Notes in Civil Engineering. 2024. Vol. 526. https://doi.org/10.1007/978-981-97-4355-1_52
- Hanli Wu, Jenny Liu, X. Zhang. Feasibility study on use of cellular concrete for air convection embankment on permafrost foundations in Fairbanks, Alaska. Transportation Geotechnics. 2020. Vol. 22. https://doi.org/10.1016/j.trgeo.2020.100317
- Ma W., Mu Y., Wu Q., et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology. 2011. Vol. 67. Iss. 3, pp. 178–186. https://doi.org/10.1016/j.coldregions.2011.02.010
- Cheng G.D., Wu Q.B., Ma W. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway. Science in China Series E: Technological Sciences. 2009. Vol. 52, pp. 530–538. https://doi.org/10.1007/s11431-008-0291-6
- Sun Yong-fu. Permafrost engineering in the Qinghai-Tibet Railway: research and practice. Journal of Glaciology and Geocryology. 2005. Vol. 27. Iss. (2), pp. 153–162. https://doi.org/10.7522/j.issn.1000-0240.2005.0025
- Wu Q., Zhang Z., Liu Y. Long-term thermal effect of asphalt pavement on permafrost under embankment. Cold Regions Science and Technology. 2010. Vol. 60. Iss. 3, pp. 221–229. https://doi.org/10.1016/j.coldregions.2009.10.007
- Galkin А.F.,Kurta I.V., Pankov V.Yu. Calculation of thermal conductivity coefficient of thermal insulation mixtures. IOP Conference Series: Materials Science and Engineering. Vol. 918. VIII International Scientific Conference Transport of Siberia-2020. 22–27 May 2020. Novosibirsk, Russia. EDN: JSYOPJ. https://doi.org/10.1088/1757-899X/918/1/012009
- Galkin A., Pankov V., Fedorov Ya. Calculation of thermal conductivity coefficient of a binary mixture. E3S Web of Conferences. International Scientific Conference “Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East” (AFE-2022). 2023. 03020. EDN: YMUQSQ. https://doi.org/10.1051/e3sconf/202337103020
- Galkin A.F., Pankov V.Yu., Fedorov Ya.V. Calculated thermal conductivity coefficient of a binary mixture. Arktika i Antarktika. 2022. No. 4, pp. 11–19. (In Russian) . EDN: ZORQDG. https://doi.org/10.7256/2453-8922.2022.4.39349
- Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing thermal stability of the roads in cryolithic zone. X International Scientific Siberian Transport Forum – Transsiberia 2022. Transportation Research Procedi. Vol. 63. 2022, pp. 412–419. EDN: XYMWGU. https://doi.org/10.1016/j.trpro.2022.06.029
补充文件
