Determination of the economic efficiency of use thermal insulation binary mixtures in road pavements

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

An effective way of reducing the consequences of negative cryogenic processes on linear structures such as landing strips, automobile and rail roads in the permafrost zone, is to reduce their interaction with frozen soils through application of thermal insulation materials. The high cost of thermal insulation is the main disadvantage of this method of controlling the thermal regime of the foundations. A possible way to decrease the construction costs is to apply binary mixtures as an insulating layer. Binary mixtures comprise a structural thermal accumulating binder material, such as sand or gravel, and a thermal insulating filler material (keramzite, azerite, expanded polystyrene pellets, crushed glass). The aim of this research is to determine the area where it is economically efficient to use binary mixtures as thermal insulation in construction of roads in the permafrost zone. The influence of the thermal physical properties of the binder and filler materials on economic efficiency was considered. Two dimensionless variables were derived: a thermal physical variable describing the ratio of the thermal conductivity coefficients of the filler and the binder, and an economic variable, the ratio of cost of a unit of volume of the filler to the binder. A dimensionless objective function allowing to determine the ratio of prices of the filler and binder when it is efficient to use the binary mixture, as opposed to a single material with similar properties, was created. Equations describing the quantitative relationships of the filler concentration with the thermal physical and economic variables to determine the boundary of economic efficiency for binary mixtures with various thermal physical properties were derived. The analysis of the objective function shows that there is a large area where it is economically advantageous to use binary mixtures and they can be recommended as a substitute for single material thermal insulation in road construction. The area of expedient use of binary mixtures depending on prices was visualized in a 3D chart.

全文:

受限制的访问

作者简介

A. Galkin

Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences

Email: afgalkkin@mail.ru

Doctor of Sciences (Engineering), 

俄罗斯联邦, 36, Merzlotnaya Street, Yakutsk, 677010

N. Plotnikov

Melnikov Permafrost Institute Siberian Branch Russian Academy of Sciences

Email: plotnikov-nikolay96@mail.ru

Engineer, Graduate Student

俄罗斯联邦, 36, Merzlotnaya Street, Yakutsk, 677010

V. Pankov

North-Eastern Federal University in Yakutsk

编辑信件的主要联系方式.
Email: pankov1956@gmail.ru

Candidate of Sciences (Geology and Mineralogy), Associate Professor

俄罗斯联邦, 58, Belinskogo Street, Yakutsk, 677027

参考

  1. Wu Q.B., Li M.Y., Liu Y Z. Thermal interaction of permafrost and the Qinghai-Tibet Railway. Journal of Cold Regions Engineering. 2010. Vol. 24, Iss. 4, pp. 112–125. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000016
  2. Galkin A.F., Kurta I.V., Pankov V.Y. Use of burnt rocks in underground laying of cable communication lines in the cryolithozone. Izvestiya of Tomsk Polytechnic University. Engineering of Georesources. 2020. Vol. 331. No. 12, pp. 131–137. (In Russian). EDN: LESDKA. https://doi.org/10.18799/24131830/2020/12/2946
  3. Mu Y.H., Ma W., Wu Q.B., et al. Thermal regime of conventional embankments along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology. 2012. Vol. 70, pp. 123–131. https://doi.org/10.1016/j.coldregions.2011.08.005
  4. Wang S J, Chen J B, Zhang J Z, et al. Development of highway constructing technology in the permafrost region on the Qinghai Tibet Plateau. Science in China Series E: Technological Sciences. 2009. Vol. 52, pp. 497–506. EDN: BVIAUU. https://doi.org/10.1007/s11431-008-0355-7
  5. Pankov V.Yu. The problem of mechanical loads on pavement of roads in the cryolithic zone. E3S Web of Conferences. 2022. Vol. 363. 01039. EDN: SSRMJT. https://doi.org/10.1051/e3sconf/202236301039
  6. Varlamov S.P., Zhirkov A.F., Nakhodkin D.A. Temperature regime of soils during disturbance of cover in modern climatic conditions of Central Yakutia. Nauka i Obrazovanie. 2017. No. 4 (88), pp. 65–71. (In Russian). EDN: YUYWZM
  7. Galkin A.F., Plotnikov N.A., Pankov V.Yu. Effect of air temperature on the depth of thawing of the road base. Arktika: Ekologiya i Ekonomika. 2023. Vol. 13. No. 4 (52), pp. 529–535. (In Russian). EDN: NLLQGS. https://doi.org/10.25283/2223-4594-2023-4-529-535
  8. Yuncheng Mao, Guoyu Li, Wei Ma, Yanhu Mu, Fei Wang, Jian Miao, Danze Wu. Field observation of permafrost degradation under Mo’he airport, Northeastern China from 2007 to 2016. Cold Regions Science and Technology. 2019. Vol. 161, pp. 43–50. https://doi.org/10.1016/j.coldregions.2019.03.004
  9. Kondratiev V.G., Kondratiev S.V. How to protect the federal highway «Amur» Chita – Khabarovsk from dangerous engineering-geocryological processes and phenomena. Inzhenernaya Geologiya. 2013. No. 5, pp. 40–47. (In Russian). EDN: RUXFKT
  10. Shapran V.V., Fazilova Z.T. Factors influencing the development of longitudinal profile deformations of the roadbed in the permafrost zone. Mir Transporta. 2020. Vol. 18. No. 2, pp. 82–101. (In Russian). EDN: WZNPPP https://doi.org/10.30932/1992-3252-2020-18-82-101
  11. Stanilovskaya Yu.V., Merzlyakov V.P., Sergeev D.O., Khimenkov A.N. Assessment of the hazard of polygonal-wedge ice for linear structures. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2014. No. 4, pp. 367–378. (In Russian). EDN: SJSXMJ
  12. Bessonov I.V., Zhukov A.D., Bobrova E.Yu., Govryakov I.S., Gorbunova E.A. Analysis of design solutions depending on the type of insulating materials in road surfaces in permafrost soils. Transportnoye Stroitel’stvo. 2022. No. 1, pp. 14–17. EDN: UNQHNE
  13. Galkin A., Pankov V.Y. Thermal protection of roads in the permafrost zone. Journal of Applied Engineering Science. 2022. Vol. 20. No. 2, pp. 395–399. EDN: NLYVAN. https://doi.org/10.5937/jaes0-34379
  14. Galkin A.F., Kurta I.V., Pankov V.Yu., Potapov A.V. Evaluation of the efficiency of using a layered thermal protection structure in road construction in the permafrost zone. Energobezopasnost’ i Energosberezheniye. 2020. No. 4, pp. 24–28. (In Russian). EDN: WYVNYF. https://doi.org/10.18635/2071-2219-2020-4-24-28
  15. Ma W., Feng G., Wu Q., et al. Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai Tibet Railway. Cold Regions Science and Technology. 2008. Vol. 53. Iss. 3, pp. 259–270. https://doi.org/10.1016/j.coldregions.2007.08.001
  16. Galkin A.F., Plotnikov N.A. Selection of building materials for the thermal insulation layer of road clothing. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 57–64. EDN: KKKYBQ. (In Russian). https://doi.org/10.31659/0585-430X-2023-817-9-57-64
  17. Mu Y., Ma W., Wu Q., et al. Cooling processes and effects of crushed rock embankment along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology. 2012. Vol. 78, pp. 107–114. https://doi.org/10.1016/j.coldregions.2012.01.014
  18. Ashpiz E.S., Khrustalev L.N., Vedernikova M.A., Emelyanova L.V. Use of synthetic thermal insulators to maintain permafrost conditions at the base of a railway embankment. Kriosfera Zemli. 2008. Vol. 12. No. 2, pp. 84–89. (In Russian). EDN: JTGMXF
  19. Galkin A.F., Plotnikov N.A., Pankov V.Y. Selection of Construction Materials for a Thermal Insulation Layer of a Road. In: Feng, G. (eds) Proceedings of the 10th International Conference on Civil Engineering. ICCE 2023. Lecture Notes in Civil Engineering. 2024. Vol. 526. https://doi.org/10.1007/978-981-97-4355-1_52
  20. Hanli Wu, Jenny Liu, X. Zhang. Feasibility study on use of cellular concrete for air convection embankment on permafrost foundations in Fairbanks, Alaska. Transportation Geotechnics. 2020. Vol. 22. https://doi.org/10.1016/j.trgeo.2020.100317
  21. Ma W., Mu Y., Wu Q., et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology. 2011. Vol. 67. Iss. 3, pp. 178–186. https://doi.org/10.1016/j.coldregions.2011.02.010
  22. Cheng G.D., Wu Q.B., Ma W. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway. Science in China Series E: Technological Sciences. 2009. Vol. 52, pp. 530–538. https://doi.org/10.1007/s11431-008-0291-6
  23. Sun Yong-fu. Permafrost engineering in the Qinghai-Tibet Railway: research and practice. Journal of Glaciology and Geocryology. 2005. Vol. 27. Iss. (2), pp. 153–162. https://doi.org/10.7522/j.issn.1000-0240.2005.0025
  24. Wu Q., Zhang Z., Liu Y. Long-term thermal effect of asphalt pavement on permafrost under embankment. Cold Regions Science and Technology. 2010. Vol. 60. Iss. 3, pp. 221–229. https://doi.org/10.1016/j.coldregions.2009.10.007
  25. Galkin А.F.,Kurta I.V., Pankov V.Yu. Calculation of thermal conductivity coefficient of thermal insulation mixtures. IOP Conference Series: Materials Science and Engineering. Vol. 918. VIII International Scientific Conference Transport of Siberia-2020. 22–27 May 2020. Novosibirsk, Russia. EDN: JSYOPJ. https://doi.org/10.1088/1757-899X/918/1/012009
  26. Galkin A., Pankov V., Fedorov Ya. Calculation of thermal conductivity coefficient of a binary mixture. E3S Web of Conferences. International Scientific Conference “Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East” (AFE-2022). 2023. 03020. EDN: YMUQSQ. https://doi.org/10.1051/e3sconf/202337103020
  27. Galkin A.F., Pankov V.Yu., Fedorov Ya.V. Calculated thermal conductivity coefficient of a binary mixture. Arktika i Antarktika. 2022. No. 4, pp. 11–19. (In Russian) . EDN: ZORQDG. https://doi.org/10.7256/2453-8922.2022.4.39349
  28. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing thermal stability of the roads in cryolithic zone. X International Scientific Siberian Transport Forum – Transsiberia 2022. Transportation Research Procedi. Vol. 63. 2022, pp. 412–419. EDN: XYMWGU. https://doi.org/10.1016/j.trpro.2022.06.029

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The value of the objective function depending on the concentration of the heat-insulating filler for two thermal conductivity simplices (λо) at different values of the cost simplex (Со) of the materials of the binary mixture: 1 – 1; 2 – 2; 3 – 6; 4 – 8; 5 – 10; a – λо=0.05; b – λо=0.5

下载 (115KB)
3. Fig. 2. The value of the objective function depending on the simplexes of thermal conductivity (λо) and cost (Со) of materials of a binary mixture: a – at a concentration of heat-insulating filler m=0.1; b – at a concentration of heat-insulating filler m=0.4

下载 (155KB)
4. Fig. 3. The permissible ratio (Со) of the cost of filler and binder materials, at which the use of a binary thermal insulation mixture with a concentration (m) and a dimensionless thermal conductivity coefficient (λо) is cost-effective: 1 – λо=0.05; 2 – λо=0.1; 3 – λо=0.5

下载 (75KB)
5. Fig. 4. The permissible ratio (Со) of the cost of filler and binder materials, at which the use of a binary thermal insulation mixture with a concentration (m) and a dimensionless coefficient (simplex) of thermal conductivity (λо) is cost-effective

下载 (100KB)

版权所有 © ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2025