Survival rate of corneal endothelial cells after cataract surgery with a background of glaucoma
- Authors: Fedorova A.I.1, Loskutov I.A.1
-
Affiliations:
- Moscow Regional Research and Clinical Institute
- Issue: Vol 15, No 3 (2024)
- Pages: 75-81
- Section: Reviews
- Submitted: 07.02.2024
- Accepted: 03.03.2024
- Published: 02.11.2024
- URL: https://clinpractice.ru/clinpractice/article/view/626539
- DOI: https://doi.org/10.17816/clinpract626539
- ID: 626539
Cite item
Abstract
Glaucoma is one of the main causes of irreversible blindness worldwide. Up to 76% of the glaucoma cases are accompanied with complicated cataract. The issue of cataract treatment in glaucoma patients is a difficult task for any surgeon, for the surgical procedure itself can result in a number of complications. One of them is the loss of endothelial cells in the cornea. A decrease in the endothelial cell density in such patients occurs due to long-term use of various hypotensive drops, due to variations of intraocular pressure, as well as due to the surgical interventions themselves. Up to 16.9% of cataract removal cases with a background of glaucoma are accompanied by pronounced post-operative corneal swelling, which leads to an increased risk of losing corneal endothelial cells. The perspective branch of surgical treatment for cataract and glaucoma is the development of a unified algorithm taking into account the individual characteristics of the patient, such as the eye lens clouding, the glaucoma stage, the intraocular pressure, the past surgeries, the hypotensive therapy and the density of corneal endothelial cells.
Full Text
BACKGROUND
Glaucoma in Russia, as well as worldwide, is one of the main reasons of incurable blindness and vision-related disability [1]. According to data from the Ministry of Health of the Russian Federation, the number of glaucoma patients in Russia is more than 1.3 mln people. During the 6 years period (2013–2019), the number of glaucoma cases in the country has increased by 10.7% (from 823.8 to 911.7 per 100 thous. of population) [2]. Y.C. Tham et al. [3] are predicting that, by the year of 2040, the number of glaucoma patients worldwide shall reach up to 111.8 mln people.
Glaucoma is a chronic eye disorder, which can be considered as a multifactorial neurodegenerative disease. Glaucoma is characterized by progressive optic neuropathy, pathological changes affecting the fields of view, by death of ganglionic cells in the retina, as well as by the loss of corneal endothelial cells [4]. Absence of complaints in patients, primary diagnostic problems, gradual and progressive visual deterioration, resulting in a decrease in working capacity and disability along with significant expenses both for individual patients and for the whole society — all of these allows for considering glaucoma as being also a social-economical disease [5].
The percentage of primary open-angle glaucoma is up to 72.3–96.1% of all the glaucoma forms [5]. The incidence of glaucoma combined with cataract varies over a wide range — from 14.6 to 76% [6–10], however, in case of pseudoexfoliative syndrome, the number of such cases increases up to 85% [7, 9, 11–14]. In glaucoma patients, a significantly elevated risk of developing complicated cataract is shown, for both conditions are involution-dependent diseases [11, 15, 16]. In persons aged over 55 years old with the diagnosis of glaucoma and cataract, the probability of developing such a combination is 3 times higher than in persons from the same age group with no ocular diseases [17–20].
GLAUCOMA AS A MULTIFACTORIAL NEURODEGENERATIVE DISEASE
In the development of primary open-angle glaucoma, two mechanisms are involved: the first one affects the anterior segment of the eye, in particular, the structure of the anterior angle, increasing the intraocular pressure, while the other occurs in the posterior segment of the eye, resulting in the development of glaucoma-related optic neuropathy [5].
Ophthalmologists suppose that the progression of cataract in glaucoma is being affected by various factors, which may include the close location of the eye lens, the ligaments, the ciliary body and the eye’s draining system, which form the posterior and the anterior ocular chambers. Besides, a certain role belongs to impaired hydrodynamics, blood microcirculation and dystrophic/immunological changes in the ocular tissues [21, 22]. Variations of intraocular pressure, changes in the content of the aqueous humour in the chamber and the associated metabolic changes within the eye structures additionally promote cataract progression, negatively affecting the course of glaucoma and, ultimately, resulting in permanent loss of visual functions [11].
Currently, the attention of the majority of ophthalmologists is attracted by the loss of corneal endothelial cells associated with glaucoma. The dystrophy of the endothelial layer in the cornea can be also caused by long-term use of glaucoma eye drops, by variations of intraocular pressure and by surgical interventions [23]. As for practical application, the majority of physicians are concerned about the levels of intraocular pressure, for it is the most controllable parameter, which can be effectively modified using medicinal and surgical correction. Т. Olsen [24] in 1980 has first reported a mean cell density decrease by 23.1% in case of acute glaucoma comparing to the unaffected eye.
Investigators Y.C. Ko et al. [25] in 2007 have found that the loss of corneal endothelial cells after phacoemulsification surgery is associated with shorter anterior-posterior axis and with the elevation of intraocular pressure within the first 24 hours after surgery, which results in the loss of corneal endothelial cells in 14.5% of the cases. In order to minimize the damage in corneal endothelial cells, it is of utmost importance to avoid sudden increases of intraocular pressure at the early post-surgery period and to exercise special caution when operating the eyes with the anterior-posterior axis being shorter than 22.6 mm.
Already in the year of 1997, M. Gagnon et al. [26] suggested a hypothesis that the mechanism of damaging the corneal endothelium, just like the damage of the optic nerve, depends on pressure. Glaucoma patients had significantly lower numbers of corneal endothelial cells (2.154±419 cells/mm2) comparing to the control group with no glaucoma (2.560±360 cells/mm2). The authors have demonstrated that the density of corneal endothelial cells is inversely proportional to the mean intraocular pressure. In patients receiving 3–4 glaucoma medications, the number of cells was lower comparing to those undergoing the treatment that employed only 1-2 medications. The number of cells was significantly lower both for primary closed-angle and for primary open-angle glaucoma.
In 2011, the research work by S. Ranno et al. [27] has evaluated the effects of glaucoma eye drops (β-blockers or prostaglandin analogues) on the corneal endothelium. Initially, in glaucoma patients, the density of corneal endothelial cells was 3187±312 cells/mm2, however, after two years of using hypotensive drops, the cell density has decreased to 2925±313 cells/mm2, including a decrease in the number of nerve fibers in the cornea along with a decrease in the reflectivity of the sub-basal plexus.
S.A. Kandarakis et al. in their descriptive review came to the conclusion that it is preferable to avoid the intake of β-adrenergic blockers Betaxolol and Carteolol at high dosages [28, 29], while patients with Fuchs endothelial dystrophy shall prefer rho-kinase inhibitors [30]. Rho-kinase stimulates the progression of cellular cycle, increasing cell migration, increasing the barrier and pumping functions, also preventing mesenchymal transformation of corneal endothelial cells in patients with Fuchs endothelial dystrophy [31, 32].
Some investigators suggested that the changes in the endothelial cell density were not related to high intraocular pressure [33, 34]. So, Japanese researchers [35] have found that, in patients with primary open-angle glaucoma, a significant decrease was found in the density of corneal endothelial cells, which was not reported in cases of glaucoma with normal pressure. The authors have explained this as being caused by a decrease in the effects of elevated intraocular pressure. Belorussian investigators P.N. Marchenko and Yu.I. Rozhko [36] have reported a decrease in the density of corneal endothelial cells comparing to the control group of the same age at all the stages of glaucoma, with the statistically significant differences being found at stages II–IV. In 2012 L.А. Deyev et al. [37] have found a direct correlation between the changes in corneal structure and the disease stage. Besides, in 2022 D. Kang et al. [38] have published the results of a research work on the inter-relation between the corneal endothelium parameters and the severity of primary glaucoma. The number of corneal endothelial cells has decreased along with the increase of severity, for in patients with early glaucoma, the density of endothelial cells was 2284 cells/mm2, in case of moderate severity disease — 2261 cells/mm2, while the severe disease cases were showing the values of 2086 cells/mm2 and the difference was statistically significant.
A growing number of surgeons prefer combined interventions performed in one step [39–45]. This approach is attractive, for it allows for simultaneously normalizing the intraocular pressure and improving the vision acuity. At the same time, there are analysis data on the density of corneal endothelial cells in patients with cataract combined with glaucoma. According to the opinion from a number of authors, comparing to single-step combined treatment including the glaucoma surgery and cataract phacoemulsification, two-stage surgery significantly decreases the number of endothelial cells [46–49].
There are research works showing the results of combined surgery for glaucoma using drainages and cataract phacoemulsification [50–53], with the loss of endothelial cell density being more than 30% within 5 years was reported in 27.2% of the patients. In patients undergoing cataract removal and implantation of the CyPass Micro-Stent (Alcon, USA), an epithelial-endothelial dystrophy was found, that was caused by the damage of corneal endothelium. This condition has occurred as a result of the effects caused by the intraocular end of the draining tube, which resulted in cessation of its production [54]. In the research work by E.H. Fang et al. [55], limited reliable evidences were obtained showing that glaucoma surgery associated with the use of long-term implants results in a greater loss of endothelial cell density comparing to cases without using prosthetic appliances.
In patients with glaucoma combined with cataract, the decrease in endothelial cell density results in an increased inflammatory reaction after cataract phacoemulsification [56, 57], which imposes a risk of corneal swelling and descemetitis of various severity degree. According to data from a number of research works, 16.9% of the patients after cataract extraction had corneal swelling [58, 59]. It is important to note that postoperative swelling is significantly less frequently found in patients with uncomplicated senile cataract (2.7% of the cases). At the same time, mature eye lens clouding was found in 19.3% of all the study patients [13].
T. Dada et al. [60] have arranged a research work on phacoemulsification in patients, focusing on factors which may impair surgical intervention. These factors include a narrow pupil caused by various conditions, such as posterior synechias, atrophy of iris, pseudoexfoliative syndrome, the use of miotics and past history of acute glaucoma onsets. In such cases, additional measure are necessary, in particular, iris retractors or pupil expansion [61]. The cataract removal surgery in glaucoma patients along with such precipitating factors represents a higher risk of damaging the endothelial cells. The research works show that from 17.8 to 51.6% of such surgeries end with intra- or post-operative complications [62].
The acute onset of closed-angle glaucoma plays one of the key roles in changing the number of corneal endothelial cells. M. Chen et al. [63] have found that the density of corneal endothelial cells was inversely related to the duration of an acute onset, but it was not related to demographic and biometric characteristics. The loss of endothelial cell density up to 2271 cells/mm2 was reported in patients with a past medical history of acute glaucoma onset comparing to paired eyes, where the cell density was 2458 cells/mm2. In patients with diagnosed closed-angle glaucoma with no history of onsets, the density of endothelial cells was 2559±45 cells/mm2. The central thickness of cornea and the curvature radius of cornea were not related to earlier acute onset of closed-angle glaucoma. The postoperative corneal swelling was found in 22.85% of the closed-angle glaucoma cases [63].
In 2021, the data were published on the factors affecting the corneal endothelium after selective laser-assisted trabeculoplasty in cases of primary open-angle and closed-angle glaucoma. Based on the research results, the main factors of losing the endothelial cell density after selective laser trabeculoplasty are the age, the initial number of endothelial cells and the shallow anterior chamber for closed-angle glaucoma. It is worth noting that corneal endothelium in cases of primary open-angle glaucoma was recovering within one month, while in closed-angle glaucoma its damage was persisting for the whole follow-up period. The importance of the research is that it confirms that the obtained data should be taken into account when selecting the algorithm of glaucoma treatment, especially in case of alternative therapy (eye lens/cataract extraction) for closed-angle glaucoma [64].
The main risk factor for losing the endothelial cell density is more long-term phacoemulsification time. High phacoemulsification energy and high vacuum positively correlate with nuclear density, which defines for the surgeon the correct selection of the viscoelastic gel (solution) and the surgery technique. In 2023, I.A. Loskutov et al. [65] have developed a scale for optimal combining the content of the viscoelastic gel depending on the number of corneal endothelial cells in patients with various stages of cataract. The scale is based on matching various types of viscoelastic gels, which have their own characteristics, specific features, benefits and drawbacks that can significantly affect the surgery results and facilitate the work of the surgeon. With correctly selected viscoelastic gel, the decrease in the number of corneal endothelial cells during the postoperative period is less than 3% regardless of the stage of cataract.
CONCLUSION
The progression of primary open-angle glaucoma negatively affects the structure of cornea and aggravates the age-related conditions, especially in persons aged 55 and older. These factors shall be taken into account when monitoring the patient status and selecting the treatment strategy.
The combination of glaucoma and cataract represents a wide-spread and topical issue in ophthalmology. The development of a unified algorithm of managing the patients with cataract and glaucoma is a promising direction of surgical treatment. Such an approach requires an individual treatment plan taking into account various factors, including the degree of eye lens clouding, the glaucoma stage, the levels of intraocular pressure, the past surgeries, the glaucoma therapy and the density of corneal endothelial cells.
The absence of effective protection method for corneal endothelial cells is a serious problem in developed countries, which results in a significant decrease in the quality of life for the patients. Developing an algorithm of managing the patients with cataract and with a background of glaucoma is the most important task for modern ophthalmology, solving which can improve not only the quality of life for the patients, but also the whole economical aspect worldwide.
ADDITIONAL INFORMATION
Funding source. The study had no sponsorship.
Competing interests. The authors declare that they have no competing interests.
Authors’ contribution. A.I. Fedorova — search and analytical work, analysis of the received data, manuscript writing; I.A. Loskutov — collecting material, analyzing literature, manuscript writing, editing. The authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.
About the authors
Anastasia I. Fedorova
Moscow Regional Research and Clinical Institute
Author for correspondence.
Email: FedorovaAnastasyaIg@yandex.ru
ORCID iD: 0009-0008-7670-2910
SPIN-code: 2706-1090
Russian Federation, Moscow
Igor A. Loskutov
Moscow Regional Research and Clinical Institute
Email: loskoutigor@mail.ru
ORCID iD: 0000-0003-0057-3338
SPIN-code: 5845-6058
MD, PhD
Russian Federation, MoscowReferences
- Борн Р.А. Глаукома — вторая по распространенности причина слепоты в мире // EuroTimes. 2006. № 10. С. 19. [Bourne RA. Glaucoma the second most common cause of blindness in the world. EuroTimes. 2006;(10):19. (In Russ.)]
- Управление федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Волгоградской области. Заболеваемость глаукомой населения России 2022. [Department of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare in the Volgograd Region. Glaucoma incidence in the Russian population 2022. (In Russ.)] Режим доступа: https://34.rospotrebnadzor.ru/content/204/12587/. Дата обращения: 15.01.2024.
- Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014;121(11): 2081–2090. doi: 10.1016/j.ophtha.2014.05.013
- Егоров Е.А., Брежнев А.Ю., Егоров А.Е. Нейропротекция при глаукоме: современные возможности и перспективы // РМЖ. Клиническая офтальмология. 2014. Т. 14, № 2. С. 108–112. [Egorov EA, Brezhnev AYu, Egorov AE. Neuroprotection in glaucoma: Modern opportunities and prospects. Russ J Clin Ophthalmol. 2014;14(2):108–112. (In Russ.)] EDN: SHBKOJ
- Егоров Е.А., Алексеев В.Н. Патогенез и лечение первичной открытоугольной глаукомы: руководство для врачей. Москва: ГЭОТАР-Медиа, 2017. С. 6–45. [Egorov EA, Alexeev VN. Pathogenesis and treatment of primary open-angle glaucoma: A guide for physicians. Moscow: GEOTAR-Media; 2017. Р. 6–45. (In Russ.)]
- Либман Е.С. Современные позиции клинико-социальной офтальмологии // Вестник офтальмологии. 2004. Т. 120, № 1. С. 10–12. [Libman ES. Modern positions of clinical and social ophthalmology. Russ Ann Ophthalmol. 2004;120(1):10–12. (In Russ.)] EDN: TWOLFD
- Бикбов М.М., Суркова В.К., Хуснитдинов И.И., Чайка О.В. Результаты применения дренажа Ahmed при рефрактерной глаукоме // РМЖ. Клиническая офтальмология. 2013. Т. 13, № 3. С. 98–100. [Bikbov MM, Surkova VK, Khusnitdinov II, Chaika OV. Results of Ahmed drainage application in refractory glaucoma. Russ J Clin Ophthalmol. 2013;13(3):98–100. (In Russ.)] EDN: REAXGJ
- Малюгин Б.Э., Тимошкина Н.Т., Андронов С.И., и др. Факоэмульсификация с имплантацией ИОЛ на глазах с узким зрачком // Офтальмохирургия. 1997. № 2. С. 25–32. [Malyugin BЕ, Timoshkina NT, Andronov SI, et al. Small pupil phacoemulsification with IOL implantation. Ophthalmosurgery. 1997;(2):25–32. (In Russ.)] EDN: XGRZFD
- Степанов А.В., Тедеева Н.Р., Гамзаева У.Ш., Луговкина К.В. Новая дренажная операция для лечения рефрактерной посттравматической глаукомы // Российский офтальмологический журнал. 2015. Т. 8, № 2. С. 54–58. [Stepanov AV, Tedeeva NR, Gamzaeva USh, Lugovkina KV. A new drainage surgery for the treatment of refractory posttraumatic glaucoma. Russ Ophthalmol J. 2015;8(2):54–58. EDN: UBXSWF
- Шмелёва В.В. Катаракта. Москва: Медицина, 1981. 223 с. [Shmeleva VV. Cataract. Moscow: Meditsina; 1981. 223 р. (In Russ.)]
- Агафонова В.В., Баринов Э.Ф., Франковска-Герлак М.С., и др. Патогенез открытоугольной глаукомы при псевдоэксфолиативном синдроме (обзор литературы) // Офтальмология. 2010. № 3. С. 106–114. [Agafonova VV, Barinov EF, Frankowska-Gerlak MS, et al. Pathogenesis of open-angle glaucoma in pseudoexfoliative syndrome (literature review). Ophthalmology. 2010;(3):106–114. (In Russ.)]
- Егорова Э.В., Сидорова А.В., Оплетина А.В., Коломейцев М.Н. Факоэмульсификация катаракты в комбинации с EX-PRESS шунтом в алгоритме лечения смешанной формы первичной открытоугольной глаукомы // Вестник ТГУ. 2015. Т. 20, № 3. С. 564–567. [Egorova EV, Sidorova AV, Opletina AV, Kolomeitsev MN. Phacoemulsification of cataract in combination with EX-PRESS shunt in the algorithm of treatment of mixed form of primary open-angle glaucoma. Bulletin TSU. 2015;20(3):564–567. (In Russ.)] EDN: TTHXUB
- Иошин И.Э., Толчинская А.И. Хирургическое лечение пациентов с двухсторонней катарактой // Офтальмохирургия. 2013. № 2. С. 10–15. [Ioshin IE, Tolchinskaya AI. Surgical treatment of patients with bilateral cataract. Ophthalmosurgery. 2013;(2):10–15. (In Russ.)] EDN: RAQGAF
- Ling JD, Bell NP. Role of cataract surgery in the management of glaucoma. Int Ophthalmol Clin. 2018;58(3):87–100. doi: 10.1097/IIO.0000000000000234
- Heijl A. Time changes of contrast thresholds during automatic perimetry. Acta Ophthalmol. 1977;55(4):696–708. doi: 10.1111/j.1755-3768.1977.tb05668.x
- Kass MA, Podos SM, Moses RA, Becker B. Prostaglandin F1 and aqueous humour dynamics. Invest Ophthalmol Vis Sci. 1972;11(12):1022–1027.
- Guan H, Mick A, Porco T, Dolan BJ. Preoperative factors associated with IOP reduction after cataract surgery. Optom Vis Sci. 2013;90(2):179–184. doi: 10.1097/OPX.0b013e31827ce224
- Гуртовая Е.Е., Могилевская Ф.Я. Экстракция катаракты после антиглаукоматозной операции // Вестник офтальмологии. 1978. № 3. С. 17–20. [Gurtovaya EE, Mogilevskaya FY. Cataract extraction after antiglaucomatous surgery. Vestnik Ophthalmologii. 1978;(3):17–20. (In Russ.)]
- Егорова Э.В. Результаты хирургического лечения больных с осложненной катарактой, перенесших ранее антиглаукоматозные операции. Современные технологии хирургии катаракты. Москва, 2003. С. 110–115. [Egorova EV. Results of surgical treatment of patients with complicated cataract who had previously undergone antiglaucomatous operations. Modern technologies of cataract surgery. Moscow; 2003. Р. 110–115. (In Russ.)]
- Yamamoto T, Sakuma T, Kitazawa Y. An ultrasound biomicroscopic study of filtering blebs after mitomycin C trabeculectomy. Ophthalmology. 1995;102(12):1770–1776. doi: 10.1016/s0161-6420(95)30795-6
- Егоров Е.А., Румянцев А.Д., Румянцева О.А., и др. Гидродинамическая активация оттока в сочетании с экстракцией катаракты в лечении больных открытоугольной глаукомой // РМЖ. Клиническая офтальмология. 2009. Т. 10, № 3. С. 84. [Egorov EA, Rumyantsev AD, Rumyantseva OA, et al. Hydrodynamic outflow activation in combination with cataract extraction in the treatment of patients with open-angle glaucoma. Russ J Clin Ophthalmol. 2009;10(3):84. (In Russ.)] EDN: OYFCIL
- Астахов С.Ю., Манцева Я.Ю. Современные возможности хирургического лечения больных с сочетанием открытоугольной глаукомы и катаракты // Современные технологии в медицине. 2014. Т. 6, № 1. С. 47–53. [Astakhov SY, Mantseva YY. Modern possibilities of surgical treatment of patients with a combination of open-angle glaucoma and cataract. Modern Technol Med. 2014;6(1):47–53. (In Russ.)] EDN: RYHLFP
- Baratz KH, Nau CB, Winter EJ, et al. Effects of glaucoma medications on corneal endothelium, keratocytes, and subbasal nerves among participants in the ocular hypertension treatment study. Cornea. 2006;25(9):1046–1052. doi: 10.1097/01.ico.0000230499.07273.c5
- Olsen T. The endothelial cell damage in acute glaucoma. On the corneal thickness response to intraocular pressure. Acta Ophthalmol (Copenh). 1980;58(2):257–266. doi: 10.1111/j.1755-3768.1980.tb05719.x
- Ko YC, Liu JL, Lau LI, et al. Factors related to corneal endothelial damage after phacoemulsification in eyes with occludable angles. J Cataract Refract Surg. 2008;34(1):46–51. doi: 10.1016/j.jcrs.2007.07.057
- Gagnon M, Boisjoly H, Brunette I, et al. Corneal endothelial cell density in glaucoma. Cornea. 1997;16(3):314–318.
- Ranno S, Fogagnolo P, Rossetti L, et al. Changes in corneal parameters at confocal microscopy in treated glaucoma patients. Clin Ophthalmol. 2011;(5):1037–1042. doi: 10.2147/OPTH.S22874
- Su W, Zhao J, Fan TJ. Dose- and time-dependent cytotoxicity of carteolol in corneal endothelial cells and the underlying mechanisms. Front Pharmacol. 2020;(11):202. doi: 10.3389/fphar.2020.00202
- Lass JH, Khosrof SA, Laurence JK, et al. A double-masked, randomized, 1-year study comparing the corneal effects of dorzolamide, timolol, and betaxolol. Dorzolamide Corneal Effects Study Group. Arch Ophthalmol. 1998;116(8):1003–1010. doi: 10.1001/archopht.116.8.1003
- Kandarakis SA, Togka KA, Doumazos L, et al. The multifarious effects of various glaucoma pharmacotherapy on corneal endothelium: A narrative review. Ophthalmol Ther. 2023;12(3):1457–1478. doi: 10.1007/s40123-023-00699-9
- Schlötzer-Schrehardt U, Zenkel M, Strunz M, et al. Potential functional restoration of corneal endothelial cells in fuchs endothelial corneal dystrophy by ROCK inhibitor (Ripasudil). Am J Ophthalmol. 2021;(224):185–199. doi: 10.1016/j.ajo.2020.12.006
- Davies E, Jurkunas U, Pineda R. Pilot study of corneal clearance with the use of a rho-kinase inhibitor after descemetorhexis without endothelial keratoplasty for Fuchs endothelial corneal dystrophy. Cornea. 2021;40(7):899–902. doi: 10.1097/ICO.0000000000002691
- Lee JH, Oh SY. Corneal endothelial cell loss from suture fixation of a posterior chamber intraocular lens. J Cataract Refract Surg. 1997;23(7):1020–1022. doi: 10.1016/s0886-3350(97)80074-0
- Verma S, Nongpiur ME, Husain R, et al. Characteristics of the corneal endothelium across the primary angle closure disease spectrum. Invest Ophthalmol Vis Sci. 2018;59(11):4525–4530. doi: 10.1167/iovs.18-24939
- Cho SW, Kim J, Choi CY, Park KH. Changes in corneal endothelial cell density in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2009;53(6):569–573. doi: 10.1007/s10384-009-0740-1
- Марченко Л.Н., Рожко Ю.И. Морфология и плотность эндотелиальных клеток роговицы при первичной глаукоме // VIII Всероссийская научно-практическая конференция с международным участием: сборник тезисов по материалам конференции (1–3 июля 2009 г.) под ред. Х.П. Тахчиди. Москва, 2009. С. 225–252. [Marchenko LN, Rozhko YI. Morphology and density of corneal endothelial cells in primary glaucoma. In: VIII All-Russian scientific-practical conference with international participation: A collection of abstracts on the conference materials (1–3 July 2009), ed. by H.P. Takhchidi. Moscow; 2009. Р. 225–252. (In Russ.)]
- Деев Л.А., Малахова А.И., Молчанов В.В. Результаты конфокальной микроскопии роговицы при первичной открытоугольной глаукоме (предварительные результаты) // Вестник Российской академии естественных наук (Санкт-Петербург). 2012. № 2. С. 172–176. [Deev LA, Malakhova AI, Molchanov VV. Results of confocal microscopy of cornea under primary open-angle glaucoma (preliminary results). Bulletin Russ Academy Natural Sci (St. Petersburg). 2012;(2):172–176. (In Russ.)] EDN: OYGGYZ
- Kang D, Kaur P, Singh K, et al. Evaluation and correlation of corneal endothelium parameters with the severity of primary glaucoma. Indian J Ophthalmol. 2022;70(10):3540–3543. doi: 10.4103/ijo.IJO_234_22
- Анисимова С.Ю., Анисимов С.И., Загребельная Л.В. Влияние техники операции на уровень снижения внутриглазного давления и зрительные функции при комбинированной хирургии катаракты и глаукомы // Современные технологии хирургии катаракты. 2003. С. 31–37. [Anisimova SY, Anisimov SI, Zagrebelnaya LV. Influence of the operation technique on the level of intraocular pressure reduction and visual functions in combined cataract and glaucoma surgery. Modern Technol Cataract Surg. 2003;31–37. (In Russ.)]
- Bussel I, Kaplowitz K, Schuman JS, Loewen NA. Trabectome study G. Outcomes of ab interno trabeculectomy with the trabectome after failed trabeculectomy. Br J Ophthalmol. 2015;99(2):258–262. doi: 10.1136/bjophthalmol-2013-304717
- Francis BA, Winarko J. Ab interno Schlemm’s canal surgery: Trabectome and i-stent. Developments Ophthalmol. 2012;(50): 125–136. doi: 10.1159/000334794
- Maeda M, Watanabe M, Ichikawa K. Evaluation of trabectome in open-angle glaucoma. J Glaucoma. 2013;22(3):205–208. doi: 10.1097/IJG.0b013e3182311b92
- Francis BA, Minckler D, Dustin L, et al. Combined cataract extraction and trabeculotomy by the internal approach for coexisting cataract and open-angle glaucoma: Initial results. J Cataract Refract Surg. 2008;34(7):1096–1103. doi: 10.1016/j.jcrs.2008.03.032
- SooHoo JR, Seibold LK, Kahook MY. Ab interno trabeculectomy in the adult patient. Middle East African J Ophthalmol. 2015;22(1):25–29. doi: 10.4103/0974-9233.148345
- Курышева Н.И., Федоров А.А., Еричев В.П. Патоморфологические особенности катарактального хрусталика у больных глаукомой // Вестник офтальмологии. 2000. Т. 116, № 2. С. 13–16. [Kurysheva NI, Fedorov AA, Yerichev VP. Pathomorphological features of cataract lens in patients with glaucoma. Russ Ann Ophthalmol. 2000;116(2):13–16. (In Russ.)] EDN: QBTWSD
- Анисимов С.И., Анисимова С.Ю., Арутюнян Л.Л., и др. Современные подходы к хирургическому лечению сочетанной патологии глаукомы и катаракты // Национальный журнал глаукома. 2019. Т. 18, № 4. С. 86–95. [Anisimov SI, Anisimova SY, Arutyunyan LL, et al. Modern approaches to surgical treatment of combined pathology of glaucoma and cataract. Nat J Glaucoma. 2019;18(4):86–95. (In Russ.)] EDN: NZWVMC doi: 10.25700/NJG.2019.04.07
- Fang EH, Khaw PT, Mathew RG, Henein C. Corneal endothelial cell density loss following glaucoma surgery alone or in combination with cataract surgery: A systematic review protocol. Bmj Open. 2021;11(9):E050992. doi: 10.1136/bmjopen-2021-050992
- Gimbel HV, Penno EE, Ferensowicz M. Combined cataract surgery, intraocular lens implantation, and viscocanalostomy. J Cataract Refract Surg. 1999;25(10):1370–1375. doi: 10.1016/s0886-3350(99)00203-5
- Breebaart AC, Nuyts RM, Pels E, et al. Toxic endothelial cell destruction of the cornea after routine extracapsular cataract surgery. Arch Ophthalmol. 1990;108(8):1121–1125. doi: 10.1001/archopht.1990.01070100077038
- Сулейман Е.А., Петров С.Ю. Дренажная хирургия глаукомы // Национальный журнал глаукома. 2022. Т. 21, № 2. С. 67–76. [Suleiman EA, Petrov SY. Drainage glaucoma surgery. Nat J Glaucoma. 2022;21(2):67–76. (In Russ.)] EDN: UQFILG doi: 10.53432/2O78-4lO4-2O22-2l-2-67-76
- Broadway DC, Chang LP. Trabeculectomy, risk factors for failure and the preoperative state of the conjunctiva. J Glaucoma. 2001;10(3):237–249. doi: 10.1097/00061198-200106000-00017
- Broadway DC, Iester M, Schulzer M, Douglas GR. Survival analysis for success of molteno tube implants. Br J Ophthalmol. 2001;85(6):689–695. doi: 10.1136/bjo.85.6.689
- Burgoyne JK, Wudunn D, Lakhani V, Cantor LB. Outcomes of sequential tube shunts in complicated glaucoma. Ophthalmology. 2000;107(2):309–314. doi: 10.1016/s0161-6420(99)00039-1
- Lass J, Benetz B, He J, et al. Corneal endothelial cell loss and morpho-metric changes 5 years after phacoemulsification with or without cypass micro-stent. Am J Ophthalmol. 2019;(208):211–218. doi: 10.1016/j.ajo.2019.07.016
- Fang EH, Mathew RG, Khaw PT, Henein C. Corneal endothelial cell density loss after glaucoma surgery alone or in combination with cataract surgery: A systematic review and meta-analysis. Ophthalmology. 2022;129(8):841–855. doi: 10.1016/j.ophtha.2022.03.015
- Gonçalves ED, Campos M, Paris F, et al. [Bullous keratopathy: Etiopathogenesis and treatment. Arq Bras Oftalmol. 2008;71(6 Suppl):61–64. (In Portuguese).] doi: 10.1590/s0004-27492008000700012
- Pricopie S, Istrate S, Voinea L, et al. Pseudophakic bullous keratopathy. Rom J Ophthalmol. 2017;61(2):90–94. doi: 10.22336/rjo.2017.17
- Гиноян А.А., Копаев С.Ю., Копаева В.Г. Лазерная экстракция катаракты на глазах с открытоугольной глаукомой // Вестник Оренбургского государственного университета. 2013. № 4. С. 63–65. [Ginoyan AA, Kopaev SY, Kopaeva VG. Laser cataract extraction in eyes with open-angle glaucoma. Vestnik Orenburg State University. 2013;(4):63–65. (In Russ.)] EDN: QBUXRR
- Гиноян А.А. Лазерная экстракция катаракты (Nd:Yag, 1,44 мкм) у пациентов с первичной открытоугольной глаукомой // Национальный журнал глаукома. 2020. Т. 19, № 4. С. 49–57. [Ginoyan AA. ND:Yag 1.44 μm laser cataract extraction and intraocular lens implantation in eyes with coexisting primary open-angle glaucoma. Nat J Glaucoma. 2020;19(4):49–57. (In Russ.)] EDN: TXZMIM doi: 10.25700/NJG.2020.04.06
- Dada T, Bhartiya S, Baig NB. Cataract surgery in eyes with previous glaucoma surgery: Pearls and pitfalls. J Curr Glaucoma Pract. 2013;7(3):99–105. doi: 10.5005/jp-journals-10008-1145
- Ивачёв Е.А. Особенности хирургии катаракты и послеоперационного периода у пациентов с глаукомой (сообщение 2) // Национальный журнал глаукома. 2022. Т. 21, № 4. С. 48–54. [Ivachev EA. Features of cataract surgery and the postoperative period in patients with glaucoma (part 2). Nat J Glaucoma. 2022;21(4):48–54. (In Russ.)] EDN: IXHJVF doi: 10.53432/2078-4104-2022-21-4-4-48-54
- Николашин С.И., Фабрикантов О.Л. Показания к расширению узкого ригидного зрачка при факоэмульсификации катаракты на глаукомных глазах в зависимости от исходного состояния глаза // Вестник Тамбовского университета. 2014. Т. 19, № 4. С. 1186–1192. [Nikolashin SI, Fabrikantov OL. Indications for narrow rigid pupil dilatation in cataract phacoemulsification in glaucomatous eyes depending on initial state of eye. Tambov University Reports. 2014;19(4):1186–1192. (In Russ.)] EDN: QNYPJC
- Chen M, Liu, Cheng C., Lee S. Corneal status in primary angle-closure glaucoma with a history of acute attack. J Glaucoma. 2012;21(1):12–16. doi: 10.1097/IJG.0b013e3181fc800a
- Kurysheva NI, Lepeshkina LV, Kapkova SG. Factors affecting the corneal endothelium after selective laser trabeculoplasty in primary open angle and angle closure glaucoma. BMJ Open Ophthalmol. 2021;6(1):e000638. doi: 10.1136/bmjophth-2020-000638
- Лоскутов И.А., Федорова А.И. Факоэмульсификация с имплантацией ИОЛ при критическом уровне эндотелиальных клеток роговицы // Офтальмологические ведомости. 2023. Т. 16, № 3. С. 63–69. [Loskutov IA, Fedorova AI. Phacoemulsification with IOL implantation at a critical level of corneal endothelial cells. Ophthalmol J. 2023;16(3):63–69. (In Russ).] EDN: KRUVDB doi: 10.17816/OV567921
Supplementary files
